#### **Mathematics Assignment 2(1)**

#### Class XI

#### **Chapter 2– Relations and Functions**

#### **Multiple Choice Questions**



- **A.** an equivalence relation
- **B.** anti-symmetric
- C. a partial ordering relation
- **D.** not symmetric and not anti-symmetric

## 2. "n/m" means that n is a factor of m, then the relation T is

- **A.** reflexive and symmetric
- **B.** transitive and symmetric
- **C.** reflexive, transitive and symmetric
- **D.** reflexive, transitive and not symmetric

# 3. If the binary operation \* is defined on a set of ordered pairs of real numbers as (a, b) \* (c, d) = (ad + bc, bd) and is associative, then (1, 2) \* (3, 5) \* (3, 4) equals

- **A.** (74,40)
- **B.** (32,40)
- **C.** (23,11)
- **D.** (7,11)

## 4. If A = (1, 2, 3, 4). Let $\sim = \{(1, 2), (1, 3), (4, 2)\}$ . Then $\sim$ is

- **A.** not anti-symmetric
- **B.** transitive
- C. reflexive
- **D.** symmetric

# 5. Which of the following set (s) are empty?

- **A.**  $\{x : x = x\}$
- **B.**  $\{x : x \neq x\}$
- **C.**  $\{x : x = x^2\}$
- **D.**  $\{x : x \neq x^2\}$

| 6. | Consider the following relations:                               |
|----|-----------------------------------------------------------------|
|    | R1 (a, b) iff (a + b) is even over the set of integers          |
|    | R2 (a, b) iff (a + b) is odd over the set of integers.          |
|    | R3 (a, b) ifa.b > 0 over the set of non zero rational numbers.  |
|    | R4 (a, b) if I a - b I $<$ = 2 over the set of natural numbers. |
| ,  | Which of the following statements is correct?                   |

- A. R1 and R2 are equivalence relations, R3 and R4 are not
- B. R1 and R3 are equivalence relations, R2 and R4 are not
- C. R1 and R4 are equivalence relations, R2 and R3 are not
- **D.** R1, R2, R3 and R4 are all equivalence relations
- 7. A relation on the integers 0 through 4 is defined by :  $R = \{(x, y) : x + y \le 2x\}$ . Which of the properties listed below applies to this relation?
  - I. Transitivity
  - **II. Symmetry**
  - III. Reflexivity
  - A. I only
  - B. III only
  - C. I and III
  - D. II and III
- 8. A relation over the set  $S = \{x, y, z\}$  is defined by :  $\{(x, x), (x, y), (y, x), (x, z), (y, z), (y, y), (z, z)\}$ . What properties hold for this relation?
  - A. Symmetric
  - **B.** Reflexive
  - C. Antisymmetric
  - **D.** Anti reflexive
- 9. The number of equivalence relations of the set (1, 2, 3, 4) is
  - **A.** 4
  - **B.** 15
  - **C.** 16
  - **D.** 24
- 10. Let x and y are sets and I x I and I y I are their respective cardinalities. It is given that there are exactly 97 functions from x to y. From this one can conclude that

**A.** 
$$|x| = 1$$
,  $|y| = 97$ 

**B.** 
$$|x| = 97$$
,  $|y| = 1$ 

**C.** 
$$|x| = 97$$
,  $|y| = 97$ 

**D.**none of these

11. If the binary operation \* is defined on a set of ordered pairs of real numbers as (a, b) \* (c, d) = (ad + bc, bd) and is associative, then

- **A.** (74,40)
- **B.** (32,40)
- **C.** (23,11)
- **D.** (7,11)

## 12. Which of the following statements is false?

- **A.** If R is reflexive, then  $R \cap R^{-1} \neq \phi$
- **B.**  $R \cap R^{-1} \neq \phi => R$  is anti-symmetric.
- **C.** If R, R' are equivalence relations in a set A, then  $R \cap R'$  is also an equivalence relation in A.
- **D.** If R, R' are reflexive relations in A, then R R' is reflexive

## 13. If $R = \{(1, 2), (2, 3), (3, 3)\}$ be a relation defined on $A = \{1, 2, 3\}$ then $R \cdot R(=R2)$ is

- A. Ritself
- **B.** {(1, 2),(1, 3),(3, 3)}
- **C.**  $\{(1,3),(2,3),(3,3)\}$
- **D.** {(2, 1),(1, 3),(2, 3)}

## 14. If $A = \{1, 2, 3\}$ then relation $S = \{(1, 1), (2, 2)\}$ is

- **A.** symmetric only
- **B.** anti-symmetric only
- **C.** both symmetric and anti-symmetric
- $\boldsymbol{D.}$  an equivalence relation

# 15. Which of the following statements is true?

- **A.** Every equivalence relation is a partial-ordering relation.
- **B.** Number of relations form  $A = \{x, y, z\}$  to  $B = \{1, 2\}$  is 64.
- **C.** Empty relation  $\phi$  is reflexive
- **D.** Properties of a relation being symmetric and being ant-symmetric are negative of each other.

16. 
$$f(x) = \{x+2 \mid (x \le -1)\}$$

$$\{x2 \quad (-1 \le x \le 1) \}$$

Then value of f(-1.75) + f(0.5) + f(1.5) is

- **A.** 0
- **B.** 2
- **C.** 1
- **D.** -1

#### 17. A relation R is defined on the set of positive integers as xRy. If $2x + y \le 5$ , the relation R is

- A. reflexive
- **B.** symmetric
- C. transitive
- **D.** None of these

## 18. Which of the following sets is a null set?

I. 
$$X = \{x \mid x = 9, 2x = 4\}$$

II. 
$$Y = \{x \mid x = 2x . x \neq 0 \}$$

III. 
$$Z = \{ x \mid x-8 = 4 \}$$

- A. I and II only
- B. I, II and III
- **C.** I and III only
- D. II and III only

# 19. A Relation R is defined on the set of integers as xRy if (x + y) is even. Which of the following statements is TRUE?

- **A.** R is not an equivalence relation
- **B.** R is an equivalence relation having one equivalence class
- **C.** R is an equivalence relation having two equivalence classes
- **D.** R is an equivalence relation having three equivalence classes

# 20. If R be a symmetric and transitvie relation on a set A, then

**A.** R is reflexive and hence an equivalence relation

| B. R is reflexive and hence a partial order                                                                   |
|---------------------------------------------------------------------------------------------------------------|
| C. R is not reflexive and hence not an equivalence relation                                                   |
| D. None of these                                                                                              |
| 21. The number of binary relations on a set with n elements is , here n^2 is n square                         |
| <b>A.</b> n <sup>2</sup>                                                                                      |
| <b>B.</b> 2 <sup>n^2</sup>                                                                                    |
| C. 2 <sup>n</sup>                                                                                             |
| <b>D.</b> None of these                                                                                       |
| 22. If A is a finite set with n elements, then number of elements in the largest equivalence relation of A is |
| <b>A.</b> 1                                                                                                   |
| <b>B.</b> n                                                                                                   |
| <b>C.</b> n+1                                                                                                 |
| <b>D.</b> n <sup>2</sup>                                                                                      |
| 23. If R is an equivalence relation on a set A, then R-1 is                                                   |
| A. reflexive                                                                                                  |
| B. symmetric                                                                                                  |
| C. transitive                                                                                                 |
| D. all of these                                                                                               |
| 24. If relation R is defined on N by R = $((a, b): a \text{ divides } b; a, b \Leftrightarrow N)$ . Then R is |
| A. reflexive                                                                                                  |
| B. symmetric                                                                                                  |
| C. transitive                                                                                                 |
| <b>D.</b> none of these                                                                                       |
| 25. Relation R is defined on the set N as f(a,b): a, b are both odd), is                                      |
| A. reflexive                                                                                                  |
| <b>B.</b> symmetric                                                                                           |
| C. transitive                                                                                                 |
| <b>D.</b> none of these                                                                                       |
|                                                                                                               |

## **ANSWER**

| 1. A  | 2. D  | 3. A  | 4. B  | 5. B  |  |
|-------|-------|-------|-------|-------|--|
| 6. B  | 7. C  | 8. B  | 9. A  | 10. A |  |
| 11. A | 12. D | 13. C | 14. C | 15. B |  |
| 16. C | 17. C | 18. A | 19. C | 20. D |  |
| 21. B | 22. D | 23. D | 24. C | 25. D |  |