SUBJECT-MATHEMATICS, CLASS-X
 CHAPTER-1(REAL NUMBERS)
 WORKSHEET (BASICS)

TIME-45 MIN
MAX.MARK-20
Choose the correct option: $(\mathbf{2} \times \mathbf{1}=\mathbf{2})$

1. For some integer q. every odd integer is of the form
a. q
b. $q+1$
c. 2 q
d. $2 q+1$
2. The product of a non-zero rational and an irrational number is
a. always irrational
c. always rational
b. rational or irrational
d. one

Fill in the blanks: $(\mathbf{2} \times \mathbf{1}=\mathbf{2})$
3. $\sqrt{2}, \sqrt{3}, \sqrt{7}$, etc. are \qquad numbers.
4. A rational number can be expressed as terminating decimal when the factors of the denominator are \qquad .

Answer the following ($\mathbf{2} \times \mathbf{1}=\mathbf{2}$)

5. What is the HCF of the smallest composite number and smallest prime number?
6. If $\operatorname{HCF}(336,54)=6$, find $\operatorname{LCM}(336,54)$

Short Answer Type Question-I ($2 \times 2=4$)

7. Explain why $3 \times 5 \times 7+7$ is a composite number?
8. After how many decimal places will the decimal expansion of $\frac{17}{8}$ terminate and find its decimal without performing the long division.

Short Answer Type Question-II ($2 \times 3=6$)
9. Apply Euclid's division algorithm to find HCF of 4052 and 420.
10. Show that any positive odd integer is the form $4 m+1$ or $4 m+3$, where m is some integer.

Long Answer Type Question ($\mathbf{1} \times 4=4$)
11.Prove that $\sqrt{ } 5$ is an irrational number.

SUBJECT-MATHEMATICS, CLASS-X CHAPTER-1(REAL NUMBERS)
 WORKSHEET (STANDARD)

TIME-45 MIN
MAX.MARK:20
Choose the correct option: $(\mathbf{2} \times \mathbf{1}=\mathbf{2})$

1. If the HCF of 65 and 117 is expressible in the form of $65 \mathrm{~m}-117$, then the value of m is
a. 4
b. 2
c. 1
d. 3
2. The decimal expansion of the rational number $\frac{14587}{1250}$ will terminate after:
a. One decimal place
c. Three decimal place
b. Two decimal place
d. Four decimal place

Fill in the blanks: $(2 \times 1=2)$
3. Every real number is either a \qquad number or an \qquad number.
4. The product of three numbers is \qquad to the product of their HCF and LCM.

Answer the following: ($\mathbf{2 \times 1}=\mathbf{2}$)
5. If 3.124 is expressed in $\frac{\mathrm{p}}{\mathrm{q}}$ form, what can you say about q ?
6. Can 12^{n} end with the digit 0 , for any natural number n ? Justify your answer.

Short Answer Type Question-I ($\mathbf{2 \times 2 = 4}$)

7. Find HCF of 612 and 1314 using prime factorization.
8. Show that $2 \sqrt{3}-5$ is irrational.

Short Answer Type Question-II ($2 \times 3=6$)

9. Three bells toll at intervals of $12 \mathrm{~min}, 15 \mathrm{~min}$ and 18 min respectively. If they start tolling together, after what time will they next toll together?
10. Find the LCM and HCF of 336 and 54 and verify that $\mathrm{HCF} \times \mathrm{LCM}=$ product of two numbers.

Long Answer Type Question ($\mathbf{1} \times 4=4$)

11. Use Euclid's division lemma to show that square of any positive integer is either of the form 3 m or $3 \mathrm{~m}+1$ for some integer m .

SUBJECT-MATHEMATICS, CLASS-X CHAPTER-1(REAL NUMBERS) WORKSHEET (HOTS)

1. "The product of two consecutive positive integers is divisible by 2 ". Is this statement true or false? Justify your answer.
2. "The product of three consecutive positive integers is divisible by 6 ".Isthis statement true or false? Justify your answer.
3. Prove that $\sqrt{ } \mathrm{p}+\sqrt{ } \mathrm{q}$ is irrational, where p, q are primes.
4. Using Euclid's division algorithm. Find the largest number that divides 1251.9377 and 13628 leaving reminders 1,2 and 3 respectively.
5. Two alarm clocks ring their alarms at regular intervals of 50 sec and 48 sec . If they first beep together at 12 noon.at what time willbeep again for the first time?
6. Show the reciprocal of $3+2 \sqrt{2}$ is an irrational number.
7. Show that $(\sqrt{3}+\sqrt{5})^{2}$ is an irrational number.
8. Prove that $\left(\sqrt{2}+\frac{1}{\sqrt{2}}\right)^{2}$ is rational.
9. If h is the HCF of 56 and 72 , find x and y satisfying $h=56 x+72 y$.
10. Show that only one of the numbers $n, n+2$ and $n+4$ is divisible by 3 .
11. Prove that $\mathrm{n}^{2}-\mathrm{n}$ is divisible by 2 for any positive integer n .
12. Use Euclid's division lemma to show that the square of any positive integer is either of the form $5 \mathrm{~m}, 5 \mathrm{~m}+1$ or $5 \mathrm{~m}+4$ for some integer m .
