DAV PUBLIC SCHOOL, POKHARIPUT SUBJECT-MATHEMATICS, CLASS- X CHAPTER-6 (TRIANGLES) WORKSHEET-BASIC

Time – ¾ hr

Fill in the blanks (2 X 1 = 2)

- Two polygons of the same number of sides are similar, if their corresponding angles are ______ and their corresponding sides are ______.
- 2. If $\triangle ABC \sim \triangle PQR$, perimeter of $\triangle ABC = 32cm$, perimeter of $\triangle PQR = 48cm \& PR = 6cm$, then the length of $AC = _$. **Choose the correct option** (2 X 1 = 2)
- 3. $\Delta DEF \sim \Delta ABC$. If DE : AB =2 :3 and ar (ΔDEF) is equal to 44 sq.units, then ar(ΔABC)in sq. units is
 - a. 99 b. 120 c. $\frac{176}{9}$ d.66
- 4. A man goes 15m due east and then 20mdue north. His distance from the starting point is

a. 35m b.5m c. 25m d. 15m

Answer the following questions: (2 × 1 = 2)

- 5. It is given that \triangle DEF ~ \triangle RPQ. Is it true to say that \angle D= \angle R and \angle F= \angle P? Why?
- 6. ABC is an isosceles triangle with AC = BC. If $AB^2 = 2AC^2$. Prove that ABC is a right triangle.

<u>Short Answer Type – I</u> (2 x 2 =4)

- 7. Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at the point O. Using a similarity criterion for two triangles, show that $\frac{OA}{OC} = \frac{OB}{OD}$.
- If the areas of two similar triangles are equal, prove that they are congruent.
 <u>Short Answer Type II</u> (2 x 3 =6)
- 9. O is any point inside a rectangle ABCD. Prove that $OB^2 + OD^2 = OA^2 + OC^2$.
- 10. In the given figure, DE || OQ and DF || OR. Show that EF || QR.

Long Answer Type -(1 × 4 =4)

11.Side AB, BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of triangle PQR. Show that $\Delta ABC \sim \Delta PQR$.

DAV PUBLIC SCHOOL, POKHARIPUT SUBJECT-MATHEMATICS, CLASS- X CHAPTER-6 (TRIANGLES) WORKSHEET-STANDARD

Time − ¾ hr

Fill in the blanks (2 X 1 = 2)

- 1. In two similar triangles ABC and DEF, AC= 3cm and DF=5cm. the ratio of the area of two triangles is _____.
- A ladder 26m long reaches a window 24m above the ground. The distance of the foot of the ladder from the base of the wall is ______.
 <u>Choose the correct option</u> (2 X 1 = 2)

3. In $\triangle ABC$ and $\triangle DEF$, $\angle B = \angle E$, $\frac{BA}{DE} = \frac{BC}{EF}$, then

- a. $\triangle ABC \sim \triangle DEF$ b. $\triangle ABC \sim \triangle EDF$ c. $\triangle ABC \sim \triangle FED$ d. $\triangle ABC \sim \triangle EFD$
- 4. If $\triangle ABC \sim \triangle PQR$, $\frac{ar(\triangle ABC)}{ar(\triangle PQR)} = \frac{9}{4}$, AB = 18cm & BC = 15cm, then PR is equal to a. 10cm b. 12cm c. $\frac{20}{3}cm$ d. 8 cm

Answer the following questions: (2 × 1 = 2)

- 5. If ABC is an equilateral triangle with AD \perp BC, then prove that $AD^2 = 3DC^2$
- 6. In $\triangle ABC$, $\angle A$ is acute. BD and CE are \bot s on AC and AB respectively. Prove that $AB \times AE = AC \times AD$.

Short Answer Type – I (2 x 2 =4)

- 7. In a $\triangle ABC$, AD is a median and E is the midpoint of AD. If BE is produced it meets AC in F. show that AF= 1/3 AC.
- 8. O is any point inside a rectangle ABCD. Prove that $OB^2 + OD^2 = OA^2 + OC^2$. Short Answer Type – II (2 x 3 =6)
- Prove that the ratio of the altitudes of two similar triangles is equal to the ratio of their corresponding sides.
- 10. ΔABC is right angled at B. side BC is trisected at points D and E. prove that $8AE^2 = 3AC^2 + 5AD^2$ Long Answer Type -(1 x 4 =4)
- 11. In an equilateral triangle ABC, D is any point on side BC such that $BD = \frac{1}{3}BC$. Prove that $9AD^2 = 7AB^2$.

MM-20

DAV PUBLIC SCHOOL, POKHARIPUT SUBJECT-MATHEMATICS, CLASS- X CHAPTER-6 (TRIANGLES) WORKSHEET-ADVANCED

Time – ¾ hr

Fill in the blanks (2 X 1 = 2)

1. If in a right-angled triangle with sides a & b and hypotenuse c, the altitude drawn on the hypotenuse is x, then ab =_____

2. In a triangle ABC, right angled at B, BD \perp AC, then $AD \times DC =$ _____.

Choose the correct option (2 X 1 = 2)

- 3. If in a triangle, a line segment PQ intersect PQ intersect AB & AC at P & Q respectively such that PQ || BC and it divides the triangle ABC into two equal parts, then the value of $\frac{BP}{AB}$ is
- a. $\frac{\sqrt{2}-1}{\sqrt{2}}$ b. $\frac{\sqrt{2}+1}{\sqrt{2}}$ c. $\frac{\sqrt{2}}{\sqrt{2}-1}$ d. $\frac{\sqrt{2}}{\sqrt{2}+1}$ 4. In $\triangle ABC$, $DE \parallel BC$, and $\frac{AD}{DB} = \frac{5}{3}$, then $\frac{DE}{BC}$ equals to a. $\frac{5}{3}$ b. $\frac{5}{8}$ c. $\frac{25}{9}$ d. $\frac{3}{5}$

Answer the following questions: (2 x 1 = 2)

- 5. AD is the bisector of angle A of triangle ABC. AB = 6cm, BD =3cm & DC= 2cm. Find the value of AC.
- 6. Corresponding sides of two similar triangles are in the ratio 2:3. If the area of the

smaller triangle is 48cm², find the area of the larger triangle.

<u>Short Answer Type – I</u> (2 × 2 =4)

- 7. In an equilateral triangle ABC, if AD perpendicular to BC, then find the value of $\frac{AB^2}{AD^2}$
- 8. $\triangle ABC$ is an isosceles triangle in which AB = AB and D is a point on BC. Prove that $AB^2 AD^2 = BD \times CD$.

Short Answer Type – II (2 × 3 =6)

- 9. In a quadrilateral ABCD, $\angle A + \angle D = 90^{\circ}$, prove that $AC^{2}+BD^{2}=AD^{2}+BC^{2}$
- 10. In an equilateral triangle ABC, D is a point on side BC such that $BD = \frac{1}{3}BC$. Prove that $9AD^2 = 7AB^2$

Long Answer Type -(1 × 4 = 4)

11. AD is a median of a triangle ABC. Prove that $AC^2 + AB^2 = 2AD^2 + \frac{1}{2}BC^2$

MM-20

EXTRA QUESTIONS

1. In the given figure, AD \perp BC. Prove that $AB^2 + CD^2 = BD^2 + AC^2$

- 2. BL and CM are medians of a triangle ABC right angles at A. Prove that $4(BL^2 + CM^2) = 5BC^2$
- 3. If AD \perp BC, and BD = $\frac{1}{3}$ CD. Prove that $2CA^2 = 2AB^2 + BC^2$
- 4. State and prove Pythagoras theorem.
- 5. ABC is a triangle in which $\angle ABC > 90^{\circ}$ and AD \perp BC produced. Prove that $AC^2 = AB^2 + BC^2 + 2BC.BD$
- 6. ABC is an equilateral triangle. D is a point on BC such that $BD = \frac{1}{3}BC$. Prove that $9AD^2 = 7AB^2$
- 7. O is any point inside a rectangle ABCD. Prove that $OB^2 + OD^2 = OA^2 + OC^2$
- 8. $\triangle ABC$ is an isosceles triangle in which AB = AC and D is a point on BC. Prove that $AB^2 - AD^2 = BD \times CD$
- 9. In right-angled triangle ABC in which $\angle C = 90^{\circ}$, if D is the mid-point of BC, prove that $AB^2 = 4AD^2 3AC^2$
- 10. Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.
- 11.ABC is a triangle in which AB=AC and D is any point in BC. Prove that $AB^2 AD^2 = BD.CD$
- 12. In $\triangle ABC$, $DE \parallel BC$, where D and E are points on AB and AC respectively. if AD=2cm and DB= 3cm, then find the ratio of $ar(\triangle ADE)$ to $ar(\triangle ABC)$
- 13. If two sides and a median bisecting the third side of a triangle are respectively proportional to the corresponding sides and the median of another triangle, then the two triangles are similar.
- 14. In $\triangle ABC$, $\angle ABC = 135^{\circ}$, prove that $AC^2 = AB^2 + BC^2 + 4 \operatorname{ar}(\triangle ABC)$
- 15. In $\triangle ABC$, $AD \perp BC$ and BC: CD = 4: 1, prove that $2AC^2 + BC^2 = 2AB^2$
- 16.In \triangle ABC, a line XY parallel to BC cuts AB at X and AC at Y. If BY bisects \angle XYC, then prove that BC=CY
- 17. If D and E are points on the sides AB and AC respectively of a $\triangle ABC$ such that DE|| BC and divides $\triangle ABC$ into two parts of equal area. Prove that $\frac{BD}{AB} = \frac{2-\sqrt{2}}{2}$

- 18. If 'A' be the area of a right triangle and 'b' be one of the sides containing the right angle, then prove that the length of the altitude on the hypotenuse is $\frac{2Ab}{\sqrt{b^4+4A^2}}$
- 19.BL and CM are medians of a triangle ABC right angled at A. prove that $4(BC^2 + CM^2) = 5BC^2$
- 20. If the bisector of an angles of a triangle bisects the opposite side, prove that the triangle is isosceles.