SUBJECT-MATHEMATICS, CLASS - IX CHAPTER 8-(QUADRILAERALS)

MCQ type question

1. Two angles of a quadrilateral are 60° and 90° and other two angles are in the ratio $8: 13$, then remaining two angles are
a) $90^{\circ}, 120^{\circ}$
b) $80^{\circ}, 130^{\circ}$
c) $100^{\circ}, 130^{\circ}$
d) $80^{\circ}, 120^{\circ}$
2. A diagonal of a rectangle is inclined to one side of the rectangle at 35°. The acute angle between the diagonals is
a) 65^{0}
b) 60°
c) 55^{0}
d) 70°
3. Three exterior angles of a quadrilateral taken in order are $72^{0}, 98^{\circ}$ and 102^{0}. The fourth exterior angle is
a) 88°
b) 99°
c) 82^{0}
d) 92^{0}
4. In figure, ABCD is a rhombus. If $\angle \mathrm{DAB}=60^{\circ}$ and $\mathrm{DM} \perp \mathrm{AB}$, then $\angle \mathrm{ABD}$ is
A

a) 50^{0}
b) 40°
c) 60°
d) 70°
5. The quadrilateral formed by joining the mid points of the sides of a quadrilateral PQRS , taken in order, is a rectangle if
a) $P Q R S$ is a rectangle
b) PQRS is a parallelogram
c) diagonals of PQRS are perpendicular
d) diagonals of PQRS are equal.
6. In a parallelogram $\mathrm{ABCD}, \angle \mathrm{B}=75^{\circ}$. Then $\angle A+\angle C$ is equal to
a) 110°
b) 210°
c) 150°
d) 185°
7. ABCD is a rhombus and both of the diagonals intersect at O . If $\mathrm{AO}=4 \mathrm{~cm}$, $\mathrm{BO}=3 \mathrm{~cm}$ then perimeter of the rhombus is
a) 18 cm
b) 20 cm
c) 21 cm
d) 22 cm
8. If angles $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}$ and $\angle \mathrm{D}$ of the quadrilateral ABCD , taken in a order, are in the ratio 3:7:6:4,then ABCD is a
a) rhombus
b) parallelogram
c) trapezium
d) kite
9. Given an equilateral triangle ABC in which D, E and F are the midpoints of $A B, B C$ and $A C$ respectively, then the quadrilateral BEFD is exactly a
a) rectangle
b) parallelogram
c) square
d) rhombus
10. Given a quadrilateral ABCD such that $\angle \mathrm{B}=90^{\circ}$ and diagonal AC and BD bisect each other at O then quadrilateral is a
a) rhombus
b) parallelogram
c) trapezium
d) rectangle

VSAQ type question

11. In a triangle $A B C, \angle B=90^{\circ}$. If side $A B=6 \mathrm{~cm}$, side $B C=8 \mathrm{~cm}$ and D is midpoint of $A C$, then find the length of $B D$.
12.The diagonal AC and BD of a parallelogram ABCD intersect each other at the point O , if $\angle \mathrm{DAC}=32^{\circ}$ and $\angle \mathrm{AOB}=70^{\circ}$ then find $\angle \mathrm{DBC}$.
12. In a parallelogram $A B C D$, if $\angle B$ exceeds $\angle A$ by 58°, What is the measure of $\angle \mathrm{B}$?
13. In figure, PQRS is a rectangle if $\angle R P Q=30^{\circ}$,
then find the value of $(\angle \mathrm{SQR}+\angle S O R)$.

14. Two adjacent angles of a rhombus are $(3 x-40)^{0}$ and $(2 x+20)^{0}$. Find the measurement of the greater angle.

Fill in the blanks

16. P is the midpoint of side BC of a parallelogram ABCD such that $\angle B A P$
$=\angle D A P$. If $\mathrm{AD}=10 \mathrm{~cm}$, then $\mathrm{CD}=$ \qquad .
17.If ABCD is a parallelogram with adjacent angles $\angle \mathrm{A}$ and $\angle \mathrm{B}$ equal to each other, then the parallelogram is a \qquad
17. In a quadrilateral $\mathrm{ABCD}, \mathrm{CO}$ and DO are angle bisectors of $\angle \mathrm{C}$ and $\angle \mathrm{D}$ respectively. Then $\angle C O D=\frac{1}{2}$ \qquad).
18. Consecutive angles of a parallelogram are \qquad .
19. If opposite angles of a quadrilateral are equal, then it is necessarily a -

SHORT ANSWER TYPE OUESTIONS -I (2X5 = 10)

1. In quadrilateral $\mathrm{ABCD}, \angle \mathrm{A}+\angle \mathrm{C}=140^{\circ}, \angle \mathrm{A}: \angle \mathrm{C}=1: 3$ and $\angle \mathrm{B}: \angle \mathrm{D}=5: 6$ Find $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}$ and $\angle \mathrm{D}$.
2. ABCD is a rectangle; diagonals AC and BD interest each other at P . $\angle A P D=52^{\circ}$. Find $\angle A C B$ and $\angle A B D$.
3. In a parallelogram $\mathrm{ABCD}, \angle \mathrm{A}=(3 \mathrm{x}-2)^{\circ}$ and $\angle \mathrm{C}=(2 \mathrm{x}+23)^{0}$

Find x. Hence find $\angle A$ and $\angle B$.
4. ABCD is a rectangle. Diagonals intersect at $\mathrm{O} . \mathrm{AC}$ is produced to E . If $\angle E C D=146^{\circ}$, find $\angle A O B$.
5 . In $\triangle \mathrm{ABC}, \mathrm{E}$ is the mid points of median AD such that BE produced meets AC at $\mathrm{F} . \mathrm{AC}=10.5 \mathrm{~cm}$. Find AF .

SHORT ANSWER TYPE QUESTIONS -- II ($\mathbf{3 \times 5} \mathbf{~ = 1 5)}$

1. ABCD is a parallelogram. AB is produced to E so that $\mathrm{BE}=\mathrm{AB}$. Prove that ED bisect BC.
2. E and F are midpoints of the sides AB and AC respectively of the $\triangle \mathrm{ABC}$. If G and H be the midpoints of AE and AF respectively, then prove that $\mathrm{GH} \| \mathrm{BC}$ and $\mathrm{GH}=\frac{1}{4} \mathrm{BC}$.

3. ABCD is a parallelogram .E and F are mid-points of AB and CD respectively. GH is any line intersecting AD, EF and BC at G, P and H respectively. Prove that $\mathrm{GP}=\mathrm{PH}$.
4. E is the midpoint of a median AD of a $\triangle \mathrm{ABC}$ and BE is produced to meet AC at F . Show that $\mathrm{AF}=\frac{1}{3} \mathrm{AC}$.
5. P is the mid-points of side BC of a $\| \mathrm{gm} \mathrm{ABCD}$ such that $\angle B A P=\angle D A P$. Prove that $A D=2 C D$.

LONG ANSWER TYPE OUESTION ($5 \times 4=20$)

1. E and F are respectively the mid points the of non parallel sides AD and $B C$ of a trapezium $A B C D$. Prove that $E F \| A B$ and $E F=\frac{1}{2}(A B+C D)$
2. BM and CN are perpendiculars to a line passing through the vertex A of a triangle ABC . If L is the midpoint of BC , prove that $\mathrm{LM}=\mathrm{LN}$.
3. P, Q and R are respectively , the mid points of sides BC, CA and AB of a $\triangle A B C$. $P R$ and $B Q$ meet at X. CR and PQ meet at Y. Prove that $X Y=\frac{1}{4} B C$.
4. Prove that the line segment joining the mid -points of the diagonals of a trapezium is parallel to each of the parallel sides and is equal to half the difference of these sides.
5. P is the mid-point of side AB of a $\| \mathrm{ABCD}$. A line through B parallel to PD meets DC at Q and $A D$ produced at R. Prove that
(i) $\mathrm{AR}=2 \mathrm{BC}$
(ii) $\mathrm{BR}=2 \mathrm{BQ}$

R

