SUBJECT-MATHEMATICS, CLASS - IX
 CHAPTER 8-(QUADRILAERALS)
 WORKSHEET (BASIC)

TIME-45min

MAX.MARKS- 20
Choose the correct option: (2X1=2)

1. In which of the following the diagonals are equal?
a. Parallelogram
b. Rhombus
c. Rectangle
d. trapezium
2. In a parallelogram ABCD , if $\angle \mathrm{DAB}=75^{\circ}$ and $\angle \mathrm{DBC}=60^{\circ}$, then $\angle \mathrm{BDC}$ is -
a. 75°
b. 60°
c. 45°
d. 55°

Fill in the blanks ($\mathbf{2 x 1}=\mathbf{2}$)

3. A quadrilateral will be a parallelogram if and only if its diagonals \qquad each other.
4. The angles of a quadrilateral are $75^{\circ}, 90^{\circ}$ and 75°. Then fourth angle is
\qquad .

Answer the following (2X1=2)
5Two consecutive angles of parallelogram are in the ratio 2:3. Find the smaller angle.
6. If ABCD is rectangle with $\angle \mathrm{BAC}=32^{\circ}$, find the measure of $\angle \mathrm{DBC}$.

Short Answer Type Question - I ($\mathbf{2 \times 2}=\mathbf{4}$)
7. The diagonal of a rectangle ABCD intersect at the point O . If $\angle \mathrm{BOC}=50^{\circ}$, then find $\angle O A D$.
8. In the given figure, AD is the median and DE II AB . Prove that BE is the median.

Short Answer Type Question - II (2x3=6)

9. E and F are points on diagonal AC of a parallelogram ABCD such that $\mathrm{AE}=\mathrm{CF}$. Show that BFDE is a parallelogram.
10. Show that the line segment joining the mid-points of the opposite sides of a quadrilateral bisect each other.

Long Answer Type Question (1x4=4)

11. ABC is a triangle right angled at C . A line through the mid-point M of hypotenuse $A B$ and parallel to $B C$ intersect $A C$ at D. Show that $C M=M A=\frac{1}{2} A B$.

DAV PUBLIC SCHOOL,CDA SEC-6 CUTTACK SUBJECT-MATHEMATICS,CLASS - IX
 CHAPTER 8-(QUADRILAERALS)
 WORKSHEET (STANDARD)

TIME-45min

MAX.MARKS- 20

Choose the correct option :(2X1=2)

1. The figure formed by joining the mid-points of the adjacent sides of a rectangle is a
a. square
b. Rhombus
c. Rectangle
d. trapezium
2. The diagonal $A C$ and $B D$ of a parallelogram $A B C D$ intersect each Other at the point O . If $\angle \mathrm{DAC}=32^{\circ}$ and $\angle \mathrm{AOB}=70^{\circ}$, then $\angle \mathrm{DBC}$ is equal to -
a. 75°
b. 60°
c. 38°
d. 55°

Fill In The Blanks ($\mathbf{2 x} \mathbf{1 = 2)}$
3. Diagonals of a quadrilateral ABCD bisect each other. If $\angle A=45^{\circ}$, then $\angle \mathrm{B}=$
\qquad .
4. ABCD is a rhombus such that $\angle \mathrm{ACB}=40^{\circ}$,then $\angle \mathrm{ADB}$ is \qquad .

Answer The Following Questions (2x1=2)
5. The parallel sides of a trapezium are 7 cm and 5 cm respectively. Find the line segment joining the mid-points of its non-parallel sides.
6. In $\triangle \mathrm{ABC}, \mathrm{D}$ and E are the mid-points of AB and AC respectively and $\mathrm{DE}=5.6$ cm . Find the length of $B C$.

Short Answer Type Question - I (2x2=4)

7. A diagonal of a parallelogram bisect one of its angles. Show that it's a rhombus.
8. If an angle of a parallelogram is two third of its adjacent angle, Find the smallest angle so fthe parallelogram.

Short Answer Type Question - II (2x3=6)

9. ABCD is a parallelogram and line segment AX, CY bisects the angles A and C respectively. Show that AX \| CY.

10.In $\triangle \mathrm{ABC}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ are mid-points of side AB, BC and CA respectively. Show that $\triangle \mathrm{ABC}$ is divided into four congruent triangles by joining D, E and F .

Long Answer Type Question (1X4=4)

11.Prove that the line segment joining the midpoints of the diagonals of a trapezium is parallel to the parallel sides of the trapezium.

DAV PUBLIC SCHOOL,CDA SEC-6 CUTTACK SUBJECT-MATHEMATICS,CLASS - IX
 CHAPTER 8-(QUADRILAERALS)
 WORKSHEET (ADVANCE)

TIME-45min

MAX.MARKS- 20
Choose the correct option :($\mathbf{2 X 1}=\mathbf{2}$)

1. A diagonal of a rectangle is inclined to one side of the rectangle at 25°. The acute angle between the diagonals is
a. 50°
b. 55°
c. 40
d. 25°
2. The two diagonals are equal in a
a. parallelogram
b. rhombus
c. rectangle
d. trapezium

Fill In The Blanks (2x1=2)
12. Bisectors of angles of a parallelogram enclose a \qquad .
13. ABCD is a parallelogram. M is the mid-point of BD and BM bisects $\angle \mathrm{B}$. Then $\angle \mathrm{AMB}=$ \qquad .

Answer The Following Questions (2x1=2)
14.In a parallelogram $A B C D$, bisectors of $\angle A$ and $\angle B$ intersect at a point P. Find $\angle A P B$.
15.If the diagonals of a rhombus are 18 cm and 24 cm respectively, then find its sides.

Short Answer Type Question - I (2x2=4)
16. In $\triangle A B C, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{CA}=7 \mathrm{~cm}$. If D and E respectively mid-points of AB and BC , determine the length of DE. Is $\mathrm{DE} \| \mathrm{BC}$?
17.In the figure, $A B C D$ is a trapezium find the value of x and y.

Short Answer Type Question - II (2x3.=6)
18. In a quadrilateral ABCD , a line segment bisecting $\angle \mathrm{C}$ and $\angle \mathrm{D}$ meet at E . Prove that $\angle \mathrm{A}+\angle \mathrm{B}=2 \angle C E D$
19. ABCD is trapezium in which $\mathrm{AB} \| \mathrm{CD}$ and $\mathrm{AD}=\mathrm{BC}$ show that $\angle A=\angle B$.

Long Answer Type Question(1X4=4)

20.E is the midpoint of median AD of $\triangle \mathrm{ABC}$ and BE is produce to meet AC at F . Show that $\mathrm{AF}=\frac{1}{3} A C$.

SUBJECT-MATHEMATICS,CLASS - IX
 CHAPTER 8-(QUADRILAERALS)
 WORKSHEET (HOTS)

1. PQRS is a parallelogram. M is a point on $P S$ such that $P M=\frac{1}{3} P S$ and N is a point on $Q R$ such that $R N=\frac{1}{3} Q R$. Prove that the quadrilateral $P N R M$ is a $g m$.
2. In $\triangle A B C, P$ and Q are mid-points of sides $A B$ and $A C$ respectively. R and S are the mid-points of PC and PB respectively. Prove that BQ and SR bisect each other.
3. $A B C D$ is a square. Side $A B$ is produced to points P and Q in such way that $P A=$ $A B=B Q$. Prove that $D Q=C P$.
4. Prove that any straight line drawn from the vertex of a triangle to the base is bisected by the straight line which joins the middle points of the other sides of triangle.
5. In the figure, the sides $A C$ of a $\triangle A B C$ is produced to E such that $C E=\frac{1}{2} A C$. If D is the mid-point of $B C$ and $E D$ produced meets $A B$ in F and $C P, D Q$ are drawn parallel to BA.
Prove that $\mathrm{FD}=\frac{1}{3} \mathrm{FE}$.

6.PQ and RS are two equal and parallel lines -segments. Any point M not lying on $P Q$ or $R S$ is joined to Q and S and lines through P parallel to $Q M$ and through R parallel to $S M$ meet at N. Prove that line segment $M N$ and $P Q$ are equal and parallel to each other.
6. P is the mid-point of the side CD of a $A B C D$. A line through C parallel to $P A$ intersects $A B$ at Q and $D A$ produced at R. Prove that $D A=A R$ and

$$
C Q=Q R .
$$

8. $A B C$ is a triangle and through A, B, C lines are drawn parallel to $B C, C A$ and $A B$ respectively intersecting at P, Q and R. Prove that the perimeter of $\triangle P Q R$ is double the perimeter of a $\triangle A B C$.
9.A square is inscribed in an isosceles right triangle so that the square and the triangle have one angle common. Show that the vertex of the square opposite the vertex of common angle bisects the hypotenuse.
9. In the figure, $B E \perp A C$. $A D$ is any line from A to $B C$ intersecting BE in $\mathrm{H} . \mathrm{P}, \mathrm{Q}$ and R are respectively the mid-points of $A H, A B$ and $B C$. Prove that

$$
<\mathrm{PQR}=90^{\circ} .
$$

B

