DAV PUBLIC SCHOOL, IFFCO, PARADEEP

CLASS-X
SUB-MATHEMATICS
TOPIC-QUADRATIC EQUATION
WORKSHEET-ADVANCED

Choose the most appropriate option

(1 mark each)

1. Sum of squares of two consecutive natural number is 313 . The numbers are
(A) 12,13
(B) 13,14
(C) 11,12
(D) 14,15
2. If $x^{2}+5 p x+16=0$ has no real root, then
(A) $p>\frac{8}{5}$
(B) $p<\frac{-8}{5}$
(C) $\frac{-8}{5}<p<\frac{8}{5}$
(D) none of these

Fill in the blanks:
3. If $x=-1$ is a common root of $a x^{2}+a x+3=0$ and $x^{2}+x+b=$ 0 , then $a b=$ \qquad .
4. The value of k, for which the roots of $x^{2}-k x+1=0$ are imaginary is
\qquad .

Answer the following question:

(1 mark each)
5. If $(1-p)$ is one root of the quadratic equation $x^{2}+p x+1-p=0$, then find the value of ' p ', hence find the roots of the given quadratic equation.
6. For what value of k , the given equation $(4-\mathrm{k}) x^{2}+(2 \mathrm{k}+4) \mathrm{x}+(8 \mathrm{k}+1)=0$ is a perfect square.

Short Answer Type Question -I
(2 marks each)
7. Solve : $5^{x+1}+5^{2-x}=5^{3}+1$
8. If -4 is a root of the equation $x^{2}+p x-4=0$ and the equation $x^{2}+p x+q=0$ has equal roots, find the values of p and q .
9. Does there exist a quadratic equation whose coefficients are all distinct irrationals but both the roots are rationals? Why?
Short Answer Type Question -II
(3 marks each)
10. Solve for $\mathrm{x}:\left(p^{2}-q^{2}\right) x^{2}-\left(q^{2}-r^{2}\right) x+r^{2}-p^{2}=0$
11.If the roots of the quadratic equation $(a-b) x^{2}+(b-c) x+(c-a)=0$ are equal, prove that $2 \mathrm{a}=\mathrm{b}+\mathrm{c}$.
12. solve for $\mathrm{x}: \frac{1}{a+b+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x} \quad[\mathrm{a} \neq 0, \mathrm{~b} \neq 0, \mathrm{x} \neq 0, \mathrm{x} \neq-(\mathrm{a}+\mathrm{b})]$

Long answer type question:

(4 marks each)

13.A rectangular field is 20 m long and 14 m wide. There is a path of equal width all around it,having an area of 111 sq m . Find the width of the path.
14.A train, travelling at a uniform speed for 360 km , would have taken 48 minutes less to travel the same distance if its speed were $5 \mathrm{~km} / \mathrm{h}$ more. Find the original speed of the train.
15. If Zeba were younger by 5 years than what she really is, then the square of her age (in years) would have been 11 more than five times her actual age. What is her age now?

