Class XII

Chapter 6- Application of Derivatives
 Topic - Tangents and Normals
 Worksheet (Advance)

1. Prove that the equation of tangent and normal to the hyperbola $x^{2} / a^{2}-y^{2} / b 2=1$ at $(x 1, y 1)$ are $x x 1 / a^{2}-y y 1 / b^{2}=1$ and $a^{2} x / x 1+b^{2} y / y 1=a^{2}+b^{2}$ (HOTS)(4)
2. If the straight line $x \cos \vartheta+y \sin \vartheta=p$ touches $x^{2} / a^{2}+y^{2} / b^{2}=1$ prove that $p^{2}=a^{2} \cos ^{2} \vartheta+b^{2} \sin ^{2} \vartheta$ (HOTS) (4)
3. If the curves $a x^{2}+b y^{2}=1$ and $a^{1} x^{2}+b^{1} y^{2}=1$ intersect orthogonally, prove that $1 / a-1 / a^{1}=1 / b-1 / b^{1}$ (HOTS) (6)
4. Find the value of p for which the curves $x^{2}=9 p(9-y)$ and $x^{2}=p(y+1)$ cut each other at right angles. (4)
5. Prove that the curve $(x / a)^{n}+(y / b)^{n}=2$ touches the straight line $x / a+y / b=2$ at (a, b) for all values of n being natural no. (4)
6. Show that the curves $x^{2} /\left(a^{2}+k\right)+y^{2} /\left(b^{2}+k\right)=1$ and $x^{2} /\left(a^{2}+k^{1}\right)+y^{2} /\left(b^{2}+k^{1}\right)=1$ intersec t orthogonally. (4)
7. The curve $y=a x^{3}+b x^{2}+c x+5$ touches the x-axis at the point $(-2,0)$ and Cuts the y-axis at a point where the slope is 3 . Find the equation of the curve completely (6)
8. Tangents are drawn from the origin to the curve $y=\sin x$. Prove that their point sof contact lie on the curve $x^{2} y^{2}=x^{2}-y^{2}(4)$
