Class XII

Chapter 6- Application of Derivatives
 Topic - Tangents and Normals
 Worksheet (Basic)

1. The slope of the normal to the curve $y=3 x^{4}-4 x$ at $x=4$ is-(1)
2. If $d y / d x$ does not exist at the point $(x 0, y 0)$,then
the tangent at this point is parallel to ------ axis. (1)
3. Find the equation of the tangent to the curve
$y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $(0,5)(1)$
4. The normal at the point $(1,1)$ on the curve $2 y+x^{2}=3$ is
(a) $x+y=0$
(b) $x-y=0$
(c) $x+y+1=0$
(d) $x-y=0(1)$
5. The slope of the tangent to the curve $x=t+3 t-8, y=2 t-2 t-5$ at the point $(2,-1)$ is
(a) $22 / 7$
(b) $6 / 7$
(c) $7 / 6$
(d) $-6 / 7(1)$
6. Find the points on the curve $x^{2} / 9+y 2 / 16=1$ at which the tangents are parallel to Y -axis . (1)
7. Find the points on the curve $y=x^{3}$ at which the slope of the tangent is equal to the y-coordinate of the point. (1)
8. Find the equation of the tangent to the curve $y=x^{2}-2 x+7$ which is perpendicular to the line $5 y-15 x=13(1)$
9. Find the equation of the normal to the curve $y=x^{3}+2 x+6$ which are parallel to the line $x+14 y+4=0(1)$
10.------------ is the equation of the normal to the curve $x^{2}+2 y^{2}-4 x-6 y+8=0$ at the point whose abscissa is 2. (1)
10. The equation of the normal to the curve $y=2 x^{2}+3 \sin x$ at $x=0$ is
(a)3
(b)1/3
(c)-3
(d) $-1 / 3$ (1)
11. The point on the curve $y=x^{3}-11 x+5$ at which the tangent is

$$
\begin{equation*}
y=x-11 \text { is } \tag{1}
\end{equation*}
$$

13. The line $y=x+1$ is a tangent to the curve $y^{2}=4 x$ at the point (a) $(1,2)(b)(2,1)(c)(1,-2)(d)(-1,2)(1)$
14. The normal to the curve $x=4 y$ passing $(1,2)$ is (a) $x+y=3$ (b) $x-y=3$ (c) $x+y=1$ (d) $x-y=1 \quad$ (1)
15. A point on the curve $y=x^{3}-3 x$,where the tangent is parallel to the chord joining $(1,-2)$ and $(2,2)(1)$
16.Find the equation of the tangent to the curve $y=3 x-2$ which is parallel to the line $4 x-2 y+5=0$.(2)
16. Find the slope of the tangent to the curve $x=1-a \sin ^{3} \vartheta, y=b \cos \vartheta$ at $\vartheta=\pi / 2(2)$
17. Find points at which the tangent to the curve $y=x^{3}-3 x^{2}-9 x+7$ is parallel to the x-axis (2)
18. Find the equation of the normal at the point $\left(\mathrm{am}^{2}, \mathrm{am}^{3}\right)$ for the curve $a y^{2}=x^{3}(2)$
19. Find the x co-ordinate of the point where the normal to $f(x)=x^{2}-3 x+1$ at $x=-1$ intersects the curve again. (2)
