WS- STANDARD

Class XII

CH- XI-The Plane

1.	The plane $2x - 3y + 6z - 11 = 0$ makes an angle $\sin^{-1} \alpha$ with X-axis, The plane of α is equal to			
	value of α is equal to	2	$\sim 3\sqrt{5}$	
	Δ 3	(c) $\frac{2}{7}$	$(d) \frac{3\sqrt{5}}{7}$	
2.	The equation of the line in vector form passing through the point $(-1, 3, 5)$ and parallel to line $\frac{x-3}{2} = \frac{y-4}{3} = \frac{z-2}{5}$ is			
	$(a) \vec{r} = (-\hat{\imath} + 3\hat{\jmath} + 5\hat{k}) + \lambda (2$	$2\hat{\imath} + 3\hat{\jmath} + 5\hat{k})$		
	$(b) \vec{r} = (-\hat{\imath} + 3\hat{\jmath} + 5\hat{k}) + \lambda(\vec{\imath})$	$2\hat{i} + 3\hat{j}$		
	$(c)\vec{r} = (2\hat{\imath} + 3\hat{\jmath} - 2\hat{k}) + \lambda($	$-\hat{\imath} + 3\hat{\jmath} + 5\hat{k})$		
	$(d) \vec{r} = (2\hat{\imath} + 3\hat{\jmath}) + \lambda(-\hat{\imath} + 3)$			
3.	The distance of the plane $\overrightarrow{r} \cdot \left(\frac{2}{7} \overrightarrow{i} + \frac{3}{7} \overrightarrow{j} - \frac{6}{7} \overrightarrow{k}\right) = 1$ from the origin is			
	(a) 1 (b) 7	(c) $\frac{1}{7}$	(d) none of these	
4.	A plane meets the co-ordinate axes a	at A,B and C such	that centroid of	
	$\triangle ABC$ is the point (a,b,c) . If the equ	ation of the plane	is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = k$,	
	then k is		a b c	
	(a) 1 (b) 2	(c)3	(d)none	
5.	If the plane 2x-y+z=0 is parallel to the line $\frac{2x-1}{2} = \frac{2-y}{2} = \frac{z+1}{a}$, then the			
	value of 'a' is			
	(a)4 (b)-4	(c)2	(d)-2	
6.	The line $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}$ lies exact	ly on the plane 2x	x-4y+z=7, then the	
	value of 'k' is			
7.	The equation of the plane containing the line $\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$ and the			
	point (0,7, -7) is	-3 2	2 1	
8.	The image of the point $(-1,3,4)$ in the plane x-2y=0 is			
	The angle between the line $\vec{r} = \hat{\imath} + 2\hat{\jmath} - \hat{k} + \mu(2\hat{\imath} + \hat{\jmath} + 2\hat{k})$ and the			
	plane 3x-2y+6z=0 is			
10	10. The co-ordinates of a point on the line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z+3}{2}$ at a distance 3			
	from the point $(1,2,-3)$ are			
11	11. The reflection of the point A(1,0,0) in the line $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$ is			

- 12. The sine of the angle between the straight line $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ and the plane 2x-2y+z=5 is _____.
- 13. Find the equation to the plane through the point (2,3,1) and (4,-5,3) and parallel to x-axis.
- 14. Find the equation of plane perpendicular to the line $\frac{x-1}{2} = \frac{y-3}{-1} = \frac{z-4}{2}$ and passing through origin.
- 15. Find the equation the plane passing through the points (2,2,1) and (9,3,6) and perpendicular to the plane 2x+6y+6z-1=0.
- 16. Find the equation of plane passing through the points (2,1,-1), (1,1,1) and (3,3,0).
- 17. Find the equation of the plane through the point (-1,2,0) and parallel to the lines $\frac{x}{3} = \frac{y+1}{0} = \frac{z-2}{-1}$ and $\frac{x-1}{1} = \frac{2y+1}{2} = \frac{z+1}{-1}$.
- 18. Find the equation of the plane passing through the intersection of the planes x+2y+3z+4=0 and 4x+3y+2z+1=0 and origin.
- 19. Find the equation of plane passing through (1,2,3) and parallel to the plane x+3y-5z=7.
- 20. Find the point where the line segment joining (-1,2,3) and (2,3,4) meets yz-plane.