WS- STANDARD

Class XII

CH- XI-The Plane

1. The plane $2 \mathrm{x}-3 \mathrm{y}+6 \mathrm{z}-11=0$ makes an angle $\sin ^{-1} \alpha$ with X -axis ,The value of α is equal to
(a) $\frac{\sqrt{3}}{2}$
(b) $\frac{\sqrt{2}}{3}$
(c) $\frac{2}{7}$
(d) $\frac{3 \sqrt{5}}{7}$
2. The equation of the line in vector form passing through the point $(-1,3,5)$ and parallel to line $\frac{x-3}{2}=\frac{y-4}{3}=\frac{z-2}{5}$ is
(a) $\vec{r}=(-\hat{\imath}+3 \hat{\jmath}+5 \hat{k})+\lambda(2 \hat{\imath}+3 \hat{\jmath}+5 \widehat{k})$
(b) $\vec{r}=(-\hat{\imath}+3 \hat{\jmath}+5 \hat{k})+\lambda(2 \hat{\imath}+3 \hat{\jmath})$
(c) $\vec{r}=(2 \hat{\imath}+3 \hat{\jmath}-2 \widehat{k})+\lambda(-\hat{\imath}+3 \hat{\jmath}+5 \widehat{k})$
(d) $\vec{r}=(2 \hat{\imath}+3 \hat{\jmath})+\lambda(-\hat{\imath}+3 \hat{\jmath}+5 \hat{k})$
3. The distance of the plane $\vec{r} \cdot\left(\frac{2}{7} \hat{i}+\frac{3}{7} \hat{j}-\frac{6}{7} \hat{k}\right)=1$ from the origin is
(a) 1
(b) 7
(c) $\frac{1}{7}$
(d) none of these
4. A plane meets the co-ordinate axes at A, B and C such that centroid of $\triangle A B C$ is the point $(\mathrm{a}, \mathrm{b}, \mathrm{c})$. If the equation of the plane is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=k$, then k is
(a) 1
(b) 2
(c) 3
(d)none
5. If the plane $2 x-y+z=0$ is parallel to the line $\frac{2 x-1}{2}=\frac{2-y}{2}=\frac{z+1}{a}$, then the value of ' a ' is
(a) 4
(b) -4
(c) 2
(d) -2
6. The line $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies exactly on the plane $2 x-4 y+z=7$, then the value of ' k ' is \qquad .
7. The equation of the plane containing the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and the point $(0,7,-7)$ is \qquad .
8. The image of the point $(-1,3,4)$ in the plane $x-2 y=0$ is \qquad .
9. The angle between the the line $\vec{r}=\hat{\imath}+2 \hat{\jmath}-\hat{k}+\mu(2 \hat{\imath}+\hat{\jmath}+2 \hat{k})$ and the plane $3 x-2 y+6 z=0$ is \qquad .
10. The co-ordinates of a point on the line $\frac{x-1}{2}=\frac{y-2}{1}=\frac{z+3}{2}$ at a distance 3 from the point $(1,2,-3)$ are \qquad .
11. The reflection of the point $\mathrm{A}(1,0,0)$ in the line $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$ is_. .
12. The sine of the angle between the straight line $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ and the plane $2 x-2 y+z=5$ is \qquad .
13.Find the equation to the plane through the point $(2,3,1)$ and $(4,-5,3)$ and parallel to x -axis.
14.Find the equation of plane perpendicular to the line $\frac{x-1}{2}=\frac{y-3}{-1}=\frac{z-4}{2}$ and passing through origin.
15.Find the equation the plane passing through the points $(2,2,1)$ and $(9,3,6)$ an d perpendicular to the plane $2 x+6 y+6 z-1=0$.
16.Find the equation of plane passing through the points $(2,1,-1),(1,1,1)$ and $(3,3,0)$.
17.Find the equation of the plane through the point $(-1,2,0)$ and parallel to the lines $\frac{x}{3}=\frac{y+1}{0}=\frac{z-2}{-1} \quad$ and $\frac{x-1}{1}=\frac{2 y+1}{2}=\frac{z+1}{-1}$.
13. Find the equation of the plane passing through the intersection of the planes $x+2 y+3 z+4=0$ and $4 x+3 y+2 z+1=0$ and origin.
19.Find the equation of plane passing through $(1,2,3)$ and parallel to the plane $x+3 y-5 z=7$.
20.Find the point where the line segment joining $(-1,2,3)$ and $(2,3,4)$ meets yz-plane.
