Worksheet

Topic: - Straight Line (Advanced/HOTS)

1. If p and q are the lengths of perpendiculars from the origin to the lines x cos $\theta-y \sin \theta=k \cos 2 \theta$ and $x \sec \theta+y \operatorname{cosec} \theta=k$, respectively, prove that $p 2+$ $4 q 2=k 2$.
2. In the triangle $A B C$ with vertices $(2,3), B(4,-1)$ and $C(1,2)$, find the equation and length of aptitude from the vertex A.
3. If p is the length of the perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$ Type equation here.
4. If the lines $2 x+y-3=0,5 x+k y-3=0$ and $3 x-y-2=0$ are concurrent, find the value of k.
5 . Find the distance of the line $4 x-y=0$ from the point $(4,1)$ measured along the line making an angle of 135° with positive x-axis.
5. Assuming that straight lines work as the plane mirror for a point, find the image of the point $(1,2)$ in the line $x-3 y+4=0$.
6. Show that the area of the triangle formed by the lines $y=m_{1} x+c_{1}, y=$ $m_{2} x+c_{2}$ and $x=0$ is $\frac{\left(c_{2}-c_{1}\right)^{2}}{2\left|m_{1}-m_{2}\right|}$.
7. A line is such that its segment between the lines $5 x-y+4=0$ and $3 x+4 y-$ $4=0$ is bisected at the point $(1,5)$. Obtain its equation.
8. Show that the path of a moving point such that its distance from two line $3 x$ $-2 y=5$ and $3 x+2 y=5$ are equal is a straight line.
9. A person is standing at the junction (crossing) of two straight paths represented by the equations $2 x-3 y+4=0$ and $3 x+4 y-5=0$ wants to reach the path whose equation is $6 x-7 y+8=0$ in the least time. Find equation of the path that he should follow.
