SUBJECT - MATHEMATICS, CLASS -X
 CHAPTER -10 (CIRCLES)
 WORKSHEET (STANDARD)

Choose the correct option-

1. The length of the tangent drawn from a point 8 cm away from the centre of a circle of radius 6 cm is
(a) 10 cm
(b) 5 cm
(c) $\sqrt{7} \mathrm{~cm}$
(d) $2 \sqrt{7} \mathrm{~cm}$
2. If tangents PA and PB from a point P to a circle with centre O are inclined to each other at an angle of 80°, then $\angle \mathrm{POA}$ is
(a) 30^{0}
(b) 70^{0}
(c) 50^{0}
(d) 100^{0}
3. The pair of tangents AP and AQ drawn from an external point A to a circle with centre O are perpendicular to each other and length of each tangent is 5 cm . Then the diameter of the circle is
4. If two tangents inclined at an angle 60° are drawn to a circle of radius 3 cm then length of each tangent is \qquad
5. If the angle between two tangents drawn from a point P to a circle of radius r and centre O is 120° then find the length of OP .
6. PA and PB are the two tangents drawn to the circle. O is the centre of the circle . A and B are the point of contact of the tangents PA and PB with the circle .If $\angle \mathrm{OPA}=35^{\circ}$ then find $\angle \mathrm{POB}$.
7. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact. [NCERT TEXTBOOK]
8. Two tangents TP and TQ are drawn to a circle with centre O from an external point T . Prove that $\angle P T Q=2 \angle O P Q$. [CBSE 2009, 11,12 \& 13]
9. If a circle touches the side BC of a triangle ABC at P and extended sides AB and AC at Q and R respectively. Prove that $A Q=\frac{1}{2}(B C+C A+A B)$. [NCERT EXEMPLAR , CBSE 2011,12]

10. PQ is a chord of length 8 cm of a circle of radius 5 cm . The tangents at P and Q intersect at a point T. Find the length TP. [NCERT TEXTBOOK]

11. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the sides of a right triangle where c is the hypotenuse, prove that the radius r of the circle which touches the sides of the triangle is given by $r=\frac{a+b-c}{2}$. [NCERT EXEMPLAR , CBSE 2012]
12. In a right triangle $A B C$ in which $\angle B=90^{\circ}$, a circle is drawn with $A B$ as diameter intersecting the hypotenuse AC at P . Prove that the tangent to the circle at P bisects BC.
13. Prove that the tangent drawn at the mid- point of an arc of a circle is parallel to the chord joining the end points of the arc.
14. $A B$ is a diameter and $A C$ is a chord of a circle with centre O such that $\angle B A C=30^{\circ}$. The tangent at C intersects extended $A B$ at a point D. Prove that $B C=B D$.
15. A is a point at a distance 13 cm from the centre O of a circle of radius 5 cm . AP and $A Q$ are the tangents to the circle at P and Q. If a tangent $B C$ is drawn at a point R lying on the minor arc $P Q$ to intersect $A P$ at B and $A Q$ at C, find the perimeter of the $\Delta \mathrm{ABC}$.
16. AB is a diameter of a circle . AH and BK are the perpendiculars from A and B respectively to the tangent at P . Prove that $\mathrm{AH}+\mathrm{BK}=\mathrm{AB}$.
17. If a hexagon $A B C D E F$ circumscribe a circle , prove that $A B+C D+E F=B C+D E+F A$. [NCERT EXEMPLAR]
18. In the given figure, from an external point P , a tangent PT and a line segment PAB drawn to a circle with centre O. ON is perpendicular on the chord $A B$. Prove that $\mathrm{PA} . \mathrm{PB}=\mathrm{PN}^{2}-\mathrm{AN}^{2} \cdot[$ [NCERT EXEMPLAR]

19. In the given fig. a $\triangle \mathrm{ABC}$ is drawn to circumscribe a circle of radius 4 cm such that the line segment BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively. Find the sides $A B$ and $A C$

20. In the given fig. $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and $\mathrm{X}^{\prime} \mathrm{Y}^{\prime}$ at B . Prove that $\angle A O B=90^{\circ}$.

