SUBJECT -MATHEMATICS ,CLASS -X

CHAPTER - 10 (CIRCLES)

WORKSHEET (HOTS)

1. If $\mathrm{TP} A N D \mathrm{TQ}$ are tangents drawn from an external point T to a circle with centre O with $\angle \mathrm{TQP}=60^{\circ}$ then $\angle \mathrm{OPQ}$ is -
(a) 30^{0}
(b) 25^{0}
(c) 40°
(d) 60°.
2. The tangent $A B$ touches a circle, with centre O, at the point O.If the radius of the circle is $5 \mathrm{~cm}, \mathrm{OB}=10 \mathrm{~cm}$ and $\mathrm{OB}=\mathrm{AB}$, then find AP .
3. AB is the diameter of a circle and AC is the chord such that $\angle \mathrm{BAC}=30^{\circ}$. If the tangent at C intersects $A B$ extended at D, then prove that $B C=B D$.
4. In a right $\Delta \mathrm{ABC}$ in which $\angle \mathrm{B}=90^{\circ}$, a circle is drawn with AB as diameter intersecting the hypotenuse AC at P . Prove that the tangent to the circle at P bisects BC .
5. In the given fig., tangents $P Q$ and $P R$ are drawn to a circle such that $\angle R P Q=30^{\circ}$. A chord RS is drawn parallel to the tangent PQ. Find the $\angle R Q S$.

6. In the given figure O is the centre of the circle of radius $5 \mathrm{~cm} . \mathrm{T}$ is a point such that $O T=13 \mathrm{~cm}$ and $O T$ intersect the circle at E. If $A B$ is the tangent to the circle at E , find the length of AB .
[NCERT EXEMPLAR]

7. In the given figure, the tangent at a point C of the circle and a diameter AB when extended intersect at P . If $\angle \mathrm{PCA}=110^{\circ}$ then find $\angle \mathrm{CBA}$. [NCERT EXEMPLAR]

8. Let s denotes the semi- perimeter of a $\triangle \mathrm{ABC}$ in which $\mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}$ and $\mathrm{AB}=\mathrm{c}$. If a circle touches the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ at $\mathrm{D}, \mathrm{E}, \mathrm{F}$ respectively. Prove that $B D=s-b$.
9. Prove that opposites of quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle. [NCERT, CBSE 2012,14]
10. In the given figure two tangents AB and AC are drawn to a circle with centre O such that $\angle B A C=120^{\circ}$. Prove that $A B=\frac{1}{2} O A$. [CBSE 2016]
