Class XII Chapter -Vector

WORKSHEET (BASIC)

A. Choose the	correct option:						
1. If $\vec{a}=2\hat{\imath}+\hat{\jmath}-8\hat{k}$ and $\vec{b}=\hat{\imath}-3\hat{\jmath}-4\hat{k}$ then magnitude of $\vec{a}+\vec{b}$ is equal to							
(a) 13	(b) $\frac{13}{3}$	$(c)^{\frac{3}{13}}$	(d) $\frac{4}{13}$				
2. If ABCDEF is a regular hexagon then \overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC} equal							
(a) 0	(b) $2\overrightarrow{AB}$	(c) $4\overrightarrow{AB}$	(d) $3\overrightarrow{AB}$				
3. The points with respective position vectors $60\hat{\imath}+3\hat{\jmath}$, $40\hat{\imath}-8\hat{\jmath}$, $x\hat{\imath}-52\hat{\jmath}$ are collinear if x is equal (a) -40 (b) 40 (c) 20 (d) -20							
4. If $ \vec{a} - \vec{b} =$	$\left \vec{a} + \vec{b} \right $ if only if						
(a) \vec{a} is parallel to \vec{b}		(b)	\vec{b}				
(c) Angle between \vec{a} and \vec{b} a		re 60°	(d) $ \vec{a} = \vec{b} $				
5. If \vec{a} , \vec{b} , \vec{c} are unit vectors, such that $\vec{a}+\vec{b}+\vec{c}=0$, then the value of $\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}$ is:							
(a) $\frac{2}{3}$	(b) $\frac{2}{3}$	(c) $\frac{3}{2}$	(d)-	$\frac{3}{2}$			
6. If \vec{a} and \vec{b} are two unit vectors inclined at an angle θ , then $\sin \frac{\theta}{2}$ is							
(a) 1	(b) $\frac{1}{2}$	(c) $-\frac{1}{2}$	(d) r	one of these			
7. If $\vec{a} + \vec{b} + \vec{c} = 0$	then						
(a) $\vec{a}.\vec{b}$ =0	(b) $\vec{a} = \vec{b}$	(c) $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times$	$\vec{c} = \vec{c} \times \vec{a}$ (d) r	one of these			
8. If $ \vec{a} \times \vec{b} $ =4	and $ \vec{a}.\vec{b} $ =2 then	$ \vec{a} ^2 \vec{b} ^2 =$					
(a) 2	(b) 6	(c) 8	(d) 20				
9.The number	of vectors of unit le	ngth perpendicula	r to vectors a=(1,1,0	0) and b=(0,1,1) is:			
(a) 3	(b) 2	(c) 1	(d) none of thes	se			

10. The value of $(\hat{\imath} \times \hat{\jmath}).\hat{k} + (\hat{\imath} \times \hat{\jmath}).\hat{\imath}$ is equal to

Class XII Chapter -Vector

	1							
	(a)1	(b) -1	(c)0	(d) none of these				
	B. Fill in the blank	(S.						
	11. If $\vec{a} \times \vec{b} = \vec{u}$, express $(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b})$ in terms of \vec{u} is equal to							
	12. If $(2\hat{\imath}+6\hat{\jmath}+14\hat{k})\times(2\hat{\imath}-\lambda\hat{\jmath}+7\hat{k})=\vec{0}$, then the value of λ is equal to							
	13 .The vectors $\vec{a} = (3\hat{\imath} + 2\hat{\jmath} + 9\hat{k})$ and $\vec{b} = (\hat{\imath} + p\hat{\jmath} + 3\hat{k})$ are parallel, then the value of p is							
	14. The value of $[\vec{a} + \vec{b}\vec{b} + \vec{c}\vec{c} + \vec{a}]$ is equal to							
15. The value of $(\overrightarrow{a} \cdot \overrightarrow{b}) \times (\overrightarrow{a} + \overrightarrow{b})$ is equal to								
	16. The expression for projection of \vec{a} on \vec{b} is equal to							
	17. If \vec{a} , \vec{b} , \vec{c} are mutually perpendicular unit vectors , then the value of $ \vec{a} - \vec{b} + \vec{c} $ is equal to							
	18. The angle between $4\hat{\imath}$ - $2\hat{\jmath}$ + $4\hat{k}$ and $3\hat{\imath}$ - $6\hat{\jmath}$ - $2\hat{k}$ is equal to							
	19. If \vec{a} , \vec{b} , \vec{c} are the position vectors of three consecutive vertices of a parallelogram, then position vector of the fourth vertex is equal to							
	20. The sine of the angle between vectors \vec{a} = 2 \hat{i} -6 \hat{j} -3 $\hat{k}\vec{b}$ = 4 \hat{i} +3 \hat{j} - \hat{k} is equal to							
C. Answer the following								
	21. Find the value of a+b if the points A(2,a,3), B(3,-5,b) and C(-1,11,9) are collinear.							
	22. Find the value of $\left (\hat{\imath} \times (\hat{\imath} + \hat{\jmath} + \hat{k})\right $							
	23. Find the unit vectors along the resultant of vectors $\vec{a}=2\hat{\imath}+3\hat{\jmath}-5\hat{k}$ and $\vec{b}=\hat{\imath}-7\hat{\jmath}+5\hat{k}$							
	24. If \vec{a} , \vec{b} , \vec{c} be the position vectors of vertices of a triangle , then write the position vector of centroid of the triangle.							
	25. If position vectors of points P and Q are $2\hat{\imath}+3\hat{\jmath}-7\hat{k}$ and $4\hat{\imath}-3\hat{\jmath}-4\hat{k}$ respectively, then find the vector \overrightarrow{PQ} .							
	26. Find the angle between the vectors $3\hat{\imath}+2\hat{\jmath}-6\hat{k}$ and $4\hat{\imath}-3\hat{\jmath}+\hat{k}$							
Í	27. If \vec{a} and \vec{b} and	27. If \vec{a} and \vec{b} are mutually perpendicular unit vectors, write the value of $ \vec{a} + \vec{b} $.						

28. If \vec{a} and \vec{b} are perpendicular vectors, $|\vec{a} + \vec{b}| = 13$ and $|\vec{a}| = 5$, find the value of $|\vec{b}|$.

30. If $\vec{a}+\vec{b}+\vec{c}=0$, then find the magnitude of the vector $\vec{a}\times\vec{b}-\vec{c}\times\vec{a}$

29. Write the value of $\vec{a}.(\vec{a} \times \vec{b})$

Class XII Chapter -Vector