Class XII

Chapter 10-Vector

WORKSHEET (HOTS)

1. If \vec{b} and \vec{c} are any two non-collinear unit vectors, \vec{a} is any vector, then show that

$$
(\vec{a} \cdot \vec{b}) \vec{b}+(\vec{a} \cdot \vec{c}) \vec{c}+\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{\left|\vec{b} \times \overrightarrow{c^{2}}\right|^{2}}(\vec{b} \times \vec{c})=\vec{a}
$$

2. In a rectangular hexagon $A B C D E F, \overrightarrow{A B}=\vec{a}$ and $\overrightarrow{B C}=\vec{b}$, then express

$$
\text { find } \overrightarrow{\mathbf{F A}}+\overrightarrow{\mathbf{A C}}+\overrightarrow{\mathbf{A D}}+\overrightarrow{\mathbf{A E}}+\overrightarrow{\mathbf{C E}} \text { in terms of } \vec{a} \text { and } \vec{b} \text {. }
$$

3. $A B C D$ is a parallelogram and $A C, B D$ are its diagonals, show that

$$
\text { (i) } \overrightarrow{A C}+\overrightarrow{B D}=2 \overrightarrow{B C} \text {, (ii) } \overrightarrow{A C}-\overrightarrow{B D}=2 \overrightarrow{A B}
$$

4. Show that the value of $|a \times \hat{\imath}|^{2}+|a \times \hat{\rho}|^{2}+|a \times \hat{k}|^{2}=2$ if $|\vec{a}|=1$.
5. If the vector $\vec{\alpha}=a \hat{\imath}+\hat{\imath}+\hat{\imath}, \vec{\beta}=\hat{\imath}+b \hat{j}+\hat{k}$ and $\vec{\gamma}=\hat{\imath}+b \hat{\jmath}+c \hat{k}$ are coplanar,

Then prove that $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=1$, where $a \neq 1, b \neq 1$ and $c \neq 1$
6. Given that vectors $\vec{a}, \vec{b}, \vec{c}$ form a triangle such that $\vec{a}=\vec{b}+\vec{c}$. Find $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$ such that

Area of triangle is $5 \sqrt{6}$ where $\vec{a}=p \hat{\imath}+q j+r \hat{k} \vec{b}=s \hat{\imath}+3 \hat{j}+4 \hat{k} \vec{c}=3 \hat{\imath}+\hat{\imath}-2 \hat{k}$
7. For any three vectors $\vec{a}, \vec{b}, \vec{c}$, show that $(\vec{a}-\vec{b}),(\vec{b}-\vec{c}),(\vec{c}-\vec{a})$ are coplanar.
8. Let $A B C$ be a triangle whose circumcentre is at P. If the position vectors of
$\mathrm{A}, \mathrm{B}, \mathrm{C}$ and P are $\vec{a}, \vec{b} \vec{c}$ and $\frac{\vec{a}+\vec{b}+\vec{c}}{4}$ respectively,
then find the position vector of the orthocenter of the triangle .
9. Let \vec{a}, \vec{b} and \vec{c} be the unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\sqrt{3}}{2}(\vec{b}+\vec{c})$.

If \vec{b} is not parallel to \vec{c}, then find the angle between \vec{a} and \vec{b}.
10. If \vec{a}, \vec{b} and \vec{c} are unit vectors satisfying $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=9$,

Find the value of $|2 \vec{a}+5 \vec{b}+3 \vec{c}|$

