CLASS-XII, SUBJECT-MATHEMATICS

CHAPTER.APPLICATION OF INTEGRATION

WORKSEET (BASIC)

1. Area bounded by the curve $y = \sin x$ and the x-axis between x = 0 and

(2 Marks Questions)

2.	(A) 2 sq units (B) 0 sq units (C) 3 sq units (D) 4 sq units . The area enclosed by the circle $x^2 + y^2 = 2$ is equal to
(A)	4π sq units (B) $2\sqrt{2}\pi$ sq units(C) $4\pi^2$ sq units (D) 2π sq units
3.	Area of the region bounded by the curve $y = \sqrt{49 - x^2}$ and the x-axis is $(A)\frac{49}{2}\pi squnits$ (B) 98π sq units (C) 49π sq units (D) 240π sq units
4.	Area of the region bounded by the curve $x = 2y + 3$, the y-axis and between $y = -1$ and $y = 1$ is
	(A) 4 sq units (B) $\frac{3}{2}$ sq units (C) 6 sq units (D) 8 sq units
5.	Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines $x = 0$
	and $x = 2$ is
	(A) π (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{4}$
6.	Area of the region bounded by the curve $y^2 = 4x$, y-axis and the line $y = 3$ is $(A)2 (B)\frac{9}{4} (C)\frac{9}{3} (D)\frac{9}{2}$
7.	Smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line $x + y = 2$ is (A) $2(\pi - 2)$ (B) $\pi - 2$ (C) $2\pi - 1$ (D) $2(\pi + 2)$
8.	Area lying between the curves $y^2 = 4x$ and $y = 2x$ is
	$(A)\frac{3}{4}$ $(B)\frac{1}{3}$ $(C)\frac{1}{4}$ (D) None of these
	Area bounded by the curve $y = x^3$, the x-axis and the ordinates $x = -2$ and $x = 1$ is $x = -9$ (B) $\frac{-15}{4}$ (C) $\frac{15}{4}$ (D) $\frac{17}{4}$
10.	The area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$ is $(A)_{\frac{3}{4}}^{\frac{4}{3}}(4\pi - \sqrt{3})(B)_{\frac{3}{4}}^{\frac{4}{3}}(4\pi + \sqrt{3})(C)_{\frac{4}{3}}^{\frac{4}{3}}(8\pi - \sqrt{3})$ $(D)_{\frac{4}{3}}^{\frac{4}{3}}(8\pi + \sqrt{3})$
11.	The area bounded by the y-axis, $y = \cos x$ and $y = \sin x$, when $0 \le x \le \frac{\pi}{2}$ is
	(A) $2(\sqrt{2}-1)$ (B) $\sqrt{2}-1$ (C) $\sqrt{2}+1$ (D) $\sqrt{2}$
12.	The area enclosed by the ellipse $\frac{x^2}{25^2} + \frac{y^2}{16^2} = 1$ is equal to

- (A) 20π sq units(B) $20\pi^2$ sq units(C) $16\pi^2$ sq units(D) 25π sq units
- 13. The area of the region bounded by the circle $x^2 + y^2 = 1$ is
 - (A) 2π sq units (B) π sq units (C) 3π sq units (D) 4π sq units
- 14. The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is
- $(A)^{\frac{7}{2}}$ sq units $(B)^{\frac{9}{2}}$ sq units $(C)^{\frac{11}{2}}$ sq units $(D)^{\frac{13}{2}}$ sq units
- 15. The area of the region bounded by the curve x = 2y + 3 and the y lines y = 1 and y = -1 is
 - (A) 4 sq units (B) $\frac{3}{2}$ sq units (C) 6 sq units (D) 8 sq units

Fill in the blanks:

- 16. The area of the region bounded by the curve $x = y^2$, y-axis and the line y = 3 and y = 4 is
- 17. The area of the region bounded by the curve $y = x^2 + x$, x-axis and theline x = 2 and x = 5 is equal to ______.
- 18. The area of the region bounded by the curve $y = \frac{1}{x}$, the x-axis and between x = 1 to x = 6 is ______.
- 19. The area enclosed by the curve $y = x^2$ and y = 8 is_____
- 20. The area of the region bounded by the curve $y^2 = x$, the y-axis and between y = 2 and y = 4 is _____ sq units.

(2 Marks Questions)

- 21. Find the area of the curve $y = \sin x$ between 0 and π .
- 22. Find the area of the region bounded by the parabola $y^2 = 2x$ and the straight line x y = 4.
- 23. Find the area of the region bounded by the curve $y = \frac{41}{x}$, x-axis and between x = 1, x = 4.
- 24. Write an expression for finding the area bounded by the curves $y = \sin x$ and $y = \cos x$, between x = 0, $x = \frac{\pi}{2}$ and the x-axis.
- 25. Find the area of the region bounded by the curve $y = x^2$ and the line y = 4.