CLASS-XII, SUBJECT-MATHEMATICS

CHAPTER.APPLICATION OF INTEGRATION

WORKSEET (BASIC)

(2 Marks Questions)

1. Area bounded by the curve $y=\sin x$ and the x-axis between $x=0$ and

$$
x=2 \pi \text { is }
$$

(A) 2 sq units
(B) 0 sq units
(C) 3 sq unit
(D) 4 sq units
2. . The area enclosed by the circle $x^{2}+y^{2}=2$ is equal to
(A) 4π sq units (B) $2 \sqrt{2} \pi$ sq units(C) $4 \pi^{2}$ sq units (D) 2π sq units
3. Area of the region bounded by the curve $y=\sqrt{49-x^{2}}$ and the x-axis is
(A) $\frac{49}{2} \pi s q u n i t s$
(B) 98π sq units
(C) 49π sq units
(D) 240π sq units
4. Area of the region bounded by the curve $x=2 y+3$, the y-axis and between $y=-1$ and y $=1$ is
(A) 4 sq units
(B) $\frac{3}{2}$ sq units
(C) 6 sq units
(D) 8 sq units
5. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is
(A) π
(B) $\frac{\pi}{2}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{4}$
6. Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is
(A)2
(B) $\frac{9}{4}$
(C) $\frac{9}{3} \quad$ (D) $\frac{9}{2}$
7. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is
(A) $2(\pi-2)$
(B) $\pi-2$
(C) $2 \pi-1$
(D) $2(\pi+2)$
8. Area lying between the curves $y^{2}=4 x$ and $y=2 x$ is
(A) $\frac{3}{4}$
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D)None of these
9. Area bounded by the curve $y=x^{3}$, the x-axis and the ordinates $x=-2$ and $x=1$ is
(A) -9
(B) $\frac{-15}{4}$
(C) $\frac{15}{4}$
(D) $\frac{17}{4}$
10. The area of the circle $x^{2}+y^{2}=16$ exterior to the parabola $y^{2}=6 x$ is
(A) $\frac{4}{3}(4 \pi-\sqrt{3})$
(B) $\frac{4}{3}(4 \pi+\sqrt{3})$
(C) $\frac{4}{3}(8 \pi-\sqrt{3})$
(D) ${ }_{3}^{4}(8 \pi+\sqrt{3})$
11. The area bounded by the y-axis, $y=\cos x$ and $y=\sin x$, when $0 \leq x \leq \frac{\pi}{2}$ is
(A) $2(\sqrt{2-1})$
(B) $\sqrt{2}-1$
(C) $\sqrt{2}+1$
(D) $\sqrt{2}$
12. The area enclosed by the ellipse $\frac{x^{2}}{25^{2}}+\frac{y^{2}}{16^{2}}=1$ is equal to
(A) 20π sq units(B) $20 \pi^{2}$ sq units (C) $16 \pi^{2}$ sq units (D) 25π sq units
13. The area of the region bounded by the circle $x^{2}+y^{2}=1$ is
(A) 2π sq units (B) π sq units (C) 3π sq units (D) 4π sq units
14. The area of the region bounded by the curve $y=x+1$ and the lines $x=2$ and $x=3$ is
(A) $\frac{7}{2}$ sq units(B) $\frac{9}{2}$ sq units (C) $\frac{11}{2}$ sq units \quad (D) $\frac{13}{2}$ sq units
15. The area of the region bounded by the curve $x=2 y+3$ and the y lines. $y=1$ and $y=-1$ is
(A) 4 sq units (B) $\frac{3}{2}$ sq units
(C) 6 sq units
(D) 8 sq units

Fill in the blanks:

16. The area of the region bounded by the curve $x=y^{2}, y$-axis and the line $y=3$ and $y=4$ is
\qquad —.
17. The area of the region bounded by the curve $y=x^{2}+x, x$-axis and theline $x=2$ and $x=5$ is equal to \qquad .
18. The area of the region bounded by the curve $\mathrm{y}=\frac{1}{x}$, the x -axis and between $\mathrm{x}=1$ to $\mathrm{x}=6$ is \qquad _.
19. The area enclosed by the curve $y=x^{2}$ and $y=8$ is \qquad .
20. The area of the region bounded by the curve $y^{2}=x$, the y-axis and between $y=2$ and $y=$ 4 is \qquad sq units.

(2 Marks Questions)

21. Find the area of the curve $y=\sin x$ between 0 and π.
22. Find the area of the region bounded by the parabola $y^{2}=2 x$ and the straight line $\mathrm{x}-\mathrm{y}=4$.
23. Find the area of the region bounded by the curve $y=\frac{41}{x}, x$-axis and between $x=1, x=4$.
24. Write an expression for finding the area bounded by the curves $y=\sin x$ and $y=\cos x$, between $\mathrm{x}=0, \mathrm{x}=\frac{\pi}{2}$ and the x -axis.
25. Find the area of the region bounded by the curve $y=x^{2}$ and the line $y=4$.
