CLASS-XII, SUBJECT-MATHEMATICS
 CHAPTER.APPLICATION OF INTEGRATION (Area under the curve)
 WORKSEET (STANDARD)

(One Mark questions)

1. The area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is equal to
(A) $\pi^{2} a b$
(B) $\pi a b$
(C) $\pi a^{2} b$
(D) $\pi a b^{2}$
2. The area of the region bounded by the curve $y=x^{2}$ and the line $y=16$
(A) $\frac{32}{3}$
(B) $\frac{256}{3}$ (C) $\frac{64}{3}$
(D) $\frac{128}{3}$
3. The area of the region bounded by the y-axis, $y=\cos x$ and $y=\sin x, 0 \leq x \leq \frac{\pi}{2}$ is
(A) $\sqrt{2}$ squnits(B) $(\sqrt{2}+1)$ sq units(
(C) $(\sqrt{2}-1)$ sq units
(D) $(2 \sqrt{2}-1)$ sq units
4. The area of the region bounded by the curve $x^{2}=4 y$ and the straight linex $=4 y-2$ is
(A) $\frac{3}{8}$ sq units(B) $\frac{5}{8}$ sq units
(C) $\frac{7}{8}$ sq units
(D) ${ }_{-8}^{9}$ sq units
5. Area of the region bounded by the curve $\mathrm{y}=\sqrt{16-x^{2}}$ and the x -axis is
(A) 8 sq units(B) 20π sq units(C) 16π sq units (D) 256π sq units
6. Area of the region in the first quadrant enclosed by the x-axis, the line $y=x a n d$ the circle $x^{2}+y^{2}=32$ is
(A) 16π sq units
(B) 4π sq units
(C) 32π sq units (D) 24 sq units
7. Area of the region bounded by the curve $y=\cos x$ between $x=0$ and $x=\pi$ is
(A) 2 sq units (B) 4 sq units (C) 3 sq units (D) 1 sq units
8. The area of the region bounded by parabola $y^{2}=x$ and the straight line $2 y=x$ is
(A) $\frac{4}{3}$ sq units
(B) 1 sq units
(C) ${ }_{3}^{2}$ sq units
(D) $\frac{1}{3}$ sq units
9. The area of the region bounded by the curve $y=\sin x$ between the ordinates $x=0, x$ $=\frac{\pi}{2}$ and the x -axis is
(A) 2 sq units
(B) 4 sq units
(C) 3 sq units
(D) 1 sq units
10. The area bounded by the curve $\mathrm{y}=\mathrm{x}|\mathrm{x}|, \mathrm{x}$-axis and the ordinates $\mathrm{x}=-1$ and $x=1$ is given by
(A) 0
(B) $\frac{1}{3}$
(C) $\frac{2}{3}$
(D) $\frac{4}{3}$
11. Find area of the region bounded by the curves $y^{2}=4 \mathrm{ax}$ and $x^{2}=4 \mathrm{ay}$; $a>0$
12. Find area of the region enclosed between two circles $x^{2}+y^{2}=9$

$$
\text { and }(x-3)^{2}+y^{2}=9
$$

13. Find a rea of the region enclosed by the parabola $y^{2}=\mathrm{x}$ and the line $x+y=2$
14. Find area of the region $\left\{(x, y): x^{2}+y^{2} \leq 4, x+y \geq 2\right\}$
15. Find area of the region $\left\{(x, y): x^{2}+y^{2} \leq 1 \leq x+y=1\right\}$.
16. Find a rea of the region enclosed by the parabola $x^{2}=4 \mathrm{y}$ and

$$
4 y-2=x .
$$

17. Find area of the region bounded by the curves $y=\sqrt{x}, 2 y+3=x$ and x -axis
18. Using integration, find the area of the region bounded by the line $y=3 x+2, x=-2, x$ $=1$ and x -axis.
19. Find area of the region enclosed by the parabola $x^{2}=y$ and $y=x$.
20. Using integration find the area of the region bounded by the parabola $y=x^{2}$ and the line $y=x$.
