CLASS-XII, SUBJECT-MATHEMATICS

CHAPTER.APPLICATION OF INTEGRATION

WORKSEET (ADVANCED)

(6 MARKS QUESTIONS)

1. Using integration, find the area of the region bounded by the triangle whose vertices are $(-2,1),(0,4),(2,3)$.
2. Find area of the region enclosed by the circles $x^{2}+y^{2}=16$ and the line $\sqrt{3} y$ $=\mathrm{x}$ in the first quadrant.
3. Using integration, find the area of the region bounded by the circle $4 x^{2}+4 y^{2}$ $=9$ and the parabola $y^{2}=4 x$.
4. Using integration find area of the region bounded by the lines $3 x-2 y+1=0$, $2 \mathrm{x}+3 \mathrm{y}-21=0$ and $\mathrm{x}-5 \mathrm{y}+9=0$.
5. Find area of the region $\left\{(x, y): x^{2}+y^{2} \leq 8, x^{2} \leq 2 y\right\}$.
6. Find area of the region $\left\{(x, y): x^{2} \leq y \leq|x|\right\}$.
7. Find area of the region $\left\{(x, y): y^{2} \leq 6 a x\right.$ and $\left.x^{2}+y^{2} \leq 16 a^{2}\right\}$.
8. Find area of the region $\left\{(x, y):|x-1| \leq y \leq \sqrt{5-x^{2}}\right\}$.
9. Find area of the region
$\left\{(x, y): y^{2} \geq\right.$ ax and $\left.x^{2}+y^{2} \leq 2 a x, x, y \geq 0\right\}$.
10. Sketch the graph of $\mathrm{y}=|x+3|$ and evaluate the area under the curve $\mathrm{y}=$ $|x+3|$ above x -axis and between $\mathrm{x}=-6$ to $\mathrm{x}=0$.
11. Find a rea of the region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}$ $=1$.
12. Find area of the region bounded by $\mathrm{y}=|x+1|+1, \mathrm{x}=-3, \mathrm{x}=3$ and $\mathrm{y}=0$.
13. Using integration, find area of the region bounded by the curves $\mathrm{y}=\sqrt{4-x^{2}} x^{2}+y^{2}-4 \mathrm{x}=0$ and the $\mathrm{x}-$ axis .
14. Using integration, find area of the region in the first quadrant enclosed by the y -axis, the line $\mathrm{y}=\mathrm{x}$ and the circle $x^{2}+y^{2}=32$.
15. Using integration, find area of the triangle formed by positive $\mathrm{x}-$ axis and tangent and normal to the circle $x^{2}+y^{2}=4$ at $(1, \sqrt{3})$.
16. Using integration, find area of the region bounded by the line $x-y+2=0$, the curve $\mathrm{x}=\sqrt{\mathrm{y}}$ and $\mathrm{y}-$ axis.
17. Using integration, proves that the curves $y^{2}=4 \mathrm{x}$ and $x^{2}=4 \mathrm{y}$ divide the area of the square bounded by $x=0, x=4, y=4$ and $y=0$ into three equal parts .
18. Using integration, find the area of the greatest rectangle that can be inscribed in an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
