HOTS

1. $A B$ and $C D$ are parallel sides of trapezium $A B C D$. Diagonals $A C$ and $B D$ intersect at O. prove that $\operatorname{ar}(\triangle \mathrm{AOD})=\operatorname{ar}(\triangle \mathrm{BOC})$. (4)
2. If D is the mid .point of side of side $B C$ of a $\triangle A B C, P$ and Q are two points lying respectively on the sides $A B$ and $B C$ such that $D P$ is parallel to QA. Prove that $\operatorname{ar}(\triangle C Q P)=1 / 2 \operatorname{ar}(\triangle A B C)$. (4)
3. A rectangle is formed by joining the mid-points of the sides of a rhombus. Show that the area of rectangle is half the area of rhombus. (4)
4. In a parallelogram $A B C D, A E$ is perpendicular to $D C$ and $C F$ is perpendicular to $A D$. If $A B=10$ $\mathrm{cm}, \mathrm{AE}=6 \mathrm{~cm}$ and $C F=8 \mathrm{~cm}$, then find $A D$. (1)
5. The adjacent sides of a rectangle are 16 cm and 8 cm . Find the area of the rectangle. (1)
6. PQRS is a square. T and U are the mid-points of sides PS and QR respectively. Find the area of $\triangle O T S$, if $\mathrm{PQ}=8 \mathrm{~cm}$, where O is the point of intersection of TU and OS. (3)
7. If two sides of one triangle are equal to two sides of another triangle and the contained angles are supplementary, show that the two sides are equal in area. (4)
8. In a trapezium $A B C D$ where $A B$ is parallel to $C D, E$ is the mid-point of $B C$, prove that $\triangle A E D=$ $1 / 2$ trapezium ABCD. (4)
9. The area of triangle $A B C$ is 15 cm sq. If $\triangle A B C$ and a parallelogram $A B P D$ are on the same base and between the same parallel lines then what is the area of parallelogram ABPD. (4)
10. The area of parallelogram PQRS is 88 cm sq. A perpendicular from S is drawn to intersect $P Q$ at M. If $S M=8 \mathrm{~cm}$, then find the length of $P Q$. (4)

BASIC

1. In triangle $A B C, A D$ is a median. If the area of $\triangle A B D$ is 15 cm sq. then find the $\operatorname{ar}(\triangle A B C)$. (1)
2. $A B C D$ is a parallelogram and $B P C$ is a triangle with P falling on $A D$. If the area of parallelogram $\mathrm{ABCD}=26 \mathrm{~cm}^{2}$, find the area of triangle BPC. (2)
3. $P Q R S$ is a parallelogram and $P Q T$ is a triangle with T falling on $R S$. If area of triangle $P Q T=18$ cm^{2}, then find the area of parallelogram PQRS. (2)
4. $A B C D$ is a parallelogram where E is a point on $A D$. Area of $\triangle B C E=21 \mathrm{~cm}^{2}$. If $C D=6 \mathrm{~cm}$, then find the length of AF. (3)
5. The area of $\triangle A B C=32 \mathrm{~cm}^{2}$. $A D$ is a median and E is the mid-point of $A D$. Find the area of $\triangle B E D$. (3)
6. $A B C D$ is a parallelogram and $B C$ is produced to a point Q such that $A D=C Q$. If $A Q$ intersects $D C$ at P, show that area of $\triangle B P C=$ area of $\triangle D P Q$. (3)
7. Area of triangle $A B C=24 \mathrm{~cm}^{2}$. F, E and D are the midpoints of sides $A B, A C, B C$ respectively. Find the area of triangle EFD and of parallelogram BDEF. (3)
8. Find the area of trapezium whose parallel sides 9 cm and 5 cm respectively and the distance between these sides is 8 cm . (2)

STANDARD

Question 1:

In the figure, PSDA is a parallelogram. Points Q and R are taken on $P S$ such that $P Q=$

QR= RS and PA || QB || RC. Prove that ar (PQE) =ar (CFD). (4)

Question 2:

X and Y are points on the side $L N$ of the triangle $L M N$ such that $L X=X Y=Y N$. Through X, a line is drawn parallel to LM to meet MN at Z (see figure). Prove that ar ($\Delta L Z Y$) $=\mathrm{ar}$ (MZYX). (4)

Question 3:

The area of the parallelogram $A B C D$ is $90 \mathbf{c m}^{2}$. Find

1. $\operatorname{ar}(A B E F)$
2. $\operatorname{ar}(\triangle \mathrm{ABD})$
3. $\operatorname{ar}(\triangle \mathrm{BEF})$

(3)

Question 4:
In $\triangle A B C, D$ is the mid-point of $A B$ and P is any point on $B C$. If $C Q|\mid P D$ meets $A B$ in Q
(shown in figure), then prove that $\operatorname{ar}(\triangle B P Q)=1 / 2 \operatorname{ar}(\triangle A B C)$. (4)

Question 5:

$A B C D$ is a square. E and F are respectively the mid-points of $B C$ and $C D$. If R is the midpoint of EF, prove that ar ($\triangle \mathrm{AER})=\operatorname{ar}(\triangle \mathrm{AFR})$. (4)

Question 6:

A point E is taken on the side $B C$ of a parallelogram $A B C D . A E$ and $D C$ are produced to meet at F. Prove that ar ($\triangle \mathrm{ADF}$) $=\operatorname{ar}(\triangle \mathrm{BFC})$. (3)

Question 7:

The diagonals of a parallelogram ABCD intersect at a point O. Through O, a line is drawn to intersect $A D$ at P and $B C$ at Q. Show that PQ divides the parallelogram into two parts of equal area. (4)

Question 8:

$A B C D$ is trapezium in which $A B|\mid D C, D C=30 \mathrm{~cm}$ and $A B=$ 50 cm . If X and Y are, respectively the mid-points of AD and $B C$, prove that $\operatorname{ar}(D C Y X)=7 / 9$ ar (XYBA). (4)

