SUB- MATHEMATICS, CLASS-X
 CHAPTER -POLYNOMIAL
 (HOTS)

1. Find the condition that zeroes of the polynomial $\mathrm{p}(\mathrm{t})=t^{3}-a t^{2}+b t-c$ are such that $(\mathrm{p}-\mathrm{q}), \mathrm{p}$ and ($p+q$).
2. If the dividend polynomial is $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ and the divisor polynomial is $x^{2}-2 x+$ k, then find the values of k and p if $x+p$ is the remainder polynomial.
3. Find the zeroes of the following polynomials: $-4 \sqrt{3} x^{2}-5 x+2 \sqrt{3}$
4.If $y+p$ is a factor of the polynomial $y^{2}+a y+b$ and $y^{2}+m y+m$, then show that $p=\frac{n-b}{m-a}$.
4. If α, β and γ are zeroes of the cubic polynomial $\mathrm{k} t^{3}-5 t+9$, also $\alpha^{3}+\beta^{3}+\gamma^{3}=27$, find the value of 'k'.
5. If the zeroes of polynomial $x^{3}-a x^{2}+b x-c$ are in A.P., then show that $2 a^{3}-9 a b+27 c=0$.
6. Find the values of ' p ' such that the quadratic polynomial $(\mathrm{p}+1) x^{2}-3 p x+p$ has real zeroes.
7. Find the values of ' k ' such that the polynomial $\mathrm{k} x^{2}-5 x+3$ can be factorised in coincident linear factors.
8. If the difference of the zeroes of the polynomial $x^{2}+p x-q$ be unity, prove that $p^{2}+4 q^{2}=(1+2 q)^{2}$
9. Find the value of ' k ' for which the zeroes of the polynomial $5 x^{2}+(2 k+1) x+k-2$ are α and β, satisfying the relation $2 \alpha+3 \beta=1$.
10. If the zeroes of the polynomial $f(x)=x^{3}-3 x^{2}+x+1$ are $\mathrm{p}-\mathrm{q}, \mathrm{p}, \mathrm{p}+\mathrm{q}$, then find the values of p and q.
12.If the zeroes of $x^{2}-l x+m$ differ by 1 , then show that $l^{2}-4 m-1=0$.
11. If α and β are the zeroes of the polynomial $x^{2}+4 x+3$,form the polynomial whose zeroes are $1+\frac{\alpha}{\beta}$ and $1+\frac{\beta}{\alpha}$.
12. Twice the product of the zeroes of the polynomial $23 x^{2}-26 x+161$ is $14 p$. Find p.
13. The graph of the polynomial $p(x)$ cuts the x-axis at two places and touches at the 3 places. Find the number of zeroes of $\mathrm{p}(x)$.
14. The sum and product of zeroes of $p(x)=63 x^{2}-7 x-9$ are S and P respectively. Find the value of $27 S+$ 14P.
15. A polynomial of degree 7 is divided by a polynomial of degree 4 .Find thedegree of the quotient .
16. If $x^{4}+x^{3}+8 x^{2}+a x+b$ is divisible by $x^{2}+1$ then find $\mathrm{a}+\mathrm{b}$.
