SUB- MATHEMATICS, CLASS-X CHAPTER –POLYNOMIAL (HOTS)

1. Find the condition that zeroes of the polynomial $p(t)=t^3 - at^2 + bt - c$ are such that (p-q), p and (p+q).

2. If the dividend polynomial is $x^4 - 6x^3 + 16x^2 - 25x + 10$ and the divisor polynomial is $x^2 - 2x + k$, then find the values of k and p if x + p is the remainder polynomial.

3. Find the zeroes of the following polynomials: $-4\sqrt{3}x^2 - 5x + 2\sqrt{3}$

4. If y + p is a factor of the polynomial $y^2 + ay + b$ and $y^2 + my + m$, then show that $p = \frac{n-b}{m-a}$.

5. If α , β and γ are zeroes of the cubic polynomial $kt^3 - 5t + 9$, $also\alpha^3 + \beta^3 + \gamma^3 = 27$, find the value of 'k'.

6. If the zeroes of polynomial $x^3 - ax^2 + bx - c$ are in A.P., then show that $2a^3 - 9ab + 27c = 0$.

7. Find the values of 'p' such that the quadratic polynomial $(p+1)x^2 - 3px + p$ has real zeroes.

8. Find the values of 'k' such that the polynomial $kx^2 - 5x + 3$ can be factorised in coincident linear factors.

9. If the difference of the zeroes of the polynomial $x^2 + px - q$ be unity, prove that $p^2 + 4q^2 = (1 + 2q)^2$

10. Find the value of 'k' for which the zeroes of the polynomial $5x^2 + (2k + 1)x + k - 2 \operatorname{are} \alpha$ and β , satisfying the relation $2\alpha + 3\beta = 1$.

11. If the zeroes of the polynomial $f(x) = x^3 - 3x^2 + x + 1$ are p-q, p, p + q, then find the values of p and q.

12. If the zeroes of $x^2 - lx + m$ differ by 1, then show that $l^2 - 4m - 1 = 0$.

13. If α and β are the zeroes of the polynomial $x^2 + 4x + 3$, form the polynomial whose zeroes are $1 + \frac{\alpha}{\beta}$ and $1 + \frac{\beta}{\alpha}$.

14. Twice the product of the zeroes of the polynomial $23x^2 - 26x + 161$ is 14p. Find p.

15. The graph of the polynomial p(x) cuts the x-axis at two places and touches at the 3 places. Find the number of zeroes of p(x).

16. The sum and product of zeroes of $p(x) = 63x^2 - 7x - 9$ are S and P respectively. Find the value of 27S + 14P.

17. A polynomial of degree 7 is divided by a polynomial of degree 4. Find the degree of the quotient .

18. If $x^4 + x^3 + 8x^2 + ax + b$ is divisible by $x^2 + 1$ then find a + b.