HOTS

LA-1 type Questions

- 1. Let $f: R \to R$ and $g: R \to R$ be two functions defined by f(x) = |x| + x and f(x) = |x| x. Find fog and gof.
- 2. Let $f: R \to R$ be a function given by f(x) = px + q. Find the constants p,q such that $f \circ f = I_R$.
- 3. Show that $f: R \to (-1,1)$ is defined by $f(x) = \frac{10^x 10^{-x}}{10^x + 10^{-x}}$ is invertible. Also find $f^{-1}(x)$.
- 4. Let $f: R \to R$ be a function given by $f(x) = \frac{x}{x^2 + 1}$, $x \in R$ is neither one-one nor onto .
- 5. If $f: R \to R$ is given by $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3}\right) + \cos x \cdot \cos \left(x + \frac{\pi}{3}\right)$ and $g: R \to R$ is such that $g\left(\frac{5}{4}\right) = 1$. Show that gof is a constant function.

LA-2 type Questions

- 6. If $f: [0, \infty) \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x 5$. Show that f is invertible with $f^{-1}(y) = \frac{\sqrt{y+6}-1}{3}$. Hence find, $f^{-1}(3)$ and (ii) y, if $3f^{-1}(y) = 4$.
- 7. Consider f: $R^+ \rightarrow [-9,\infty)$ given by $f(x) = 5x^2 + 6x 9$. Prove that f is invertible with $f^{-1}(y) = \left(\frac{\sqrt{54+5y}-3}{5}\right)$
- 8. Let A= R-{3}, B = R- {1}. Let $f: A \to B$ be defined by $f(x) = \frac{x-2}{x-3} \quad \forall x \in A$. Show that f is bijective. Find inverse of f. Also find $f^{-1}(5)$.
- 9. Let $f: W \to W$ be defined as $f(n) = \begin{cases} n-1 & ifnisodd \\ n+1 & ifniseven \end{cases}$. Show that f in invertible. Find the inverse of f. Here f is the set of all whole numbers.
- 10.If $e^{f(x)} = \frac{10+x}{10-x}$, $x \in (-10,10)$ and $f(x) = k f\left(\frac{200x}{100+x^2}\right)$, then find the value of 'k'.