## WS_HOTS

## Class XII

## CH-3D Geometry

1. Find the image of the point $\mathrm{P}(1,-2,3)$ on the plane $2 x+3 y-4 z+22=0$ measured parallel to the line $\frac{x}{1}=\frac{y}{4}=\frac{z}{5}$.
2. Find the vector equation of the line passing through $(1,2,3)$ and parallel to each of the planes $\vec{r} \cdot(\hat{\imath}-\hat{\jmath}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{\imath}+\hat{\jmath}+\hat{k})=6$. Also find the point of intersection of the line thus obtained with the plane $\vec{r} \cdot(2 \hat{\imath}+\hat{\jmath}+\hat{k})=4$
3. Find the distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured parallel to the line $\frac{x-1}{2}=\frac{y-3}{3}=\frac{z+2}{-6}$.
4. Find the equation of the plane passing through $\mathrm{P}(-1,3,-2)$ and perpendicular to the lines
$\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and $\frac{x+2}{-3}=\frac{y-1}{2}=\frac{z+1}{5}$
5. Find the equation of the plane passing through the line of intersection of planes $2 \mathrm{x}+\mathrm{y}-\mathrm{z}=3$ and $5 \mathrm{x}-3 \mathrm{y}+4 \mathrm{z}+9=0$ and parallel to the line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{5}$.
6 . Find the distance of the point $(3,4,5)$ from the plane $x+y+z=2$ measured parallel to the line $2 x=y=z$
6. Find the equation of the plane which is perpendicular to the plane $5 x+3 y+6 z+8=0$ and which contains the line of intersection of the planes $x+2 y+3 z-4=0$ and $2 x+y-z+5=0$. Also find the perpendicular distance from $(1,2,1)$ to the plane.
7. Find the image point of the point $\mathrm{P}(3,2,1)$ with respect to the plane $2 x-y+z+1=0$.
8. Find the vector equation of the plane through the points $(3,4,2)$ and $(7,0,6)$ and perpendicular to the plane $2 x-5 y-15=0$. Also, show that the plane thus obtained contains
the line $\vec{r}=\hat{\imath}+\widehat{\jmath_{\jmath}}-2 \hat{k}+\lambda(\hat{\imath}-\hat{\jmath}+\hat{k})$.
9. 

Show that the lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar . Also find the equation of plane containing them .

