a) V INSTHUTIONS : DISHA Zone-1

- Ma0e9
 DMPUBLIC SChoor UWII-VIII, BBSR-12

 MATYEMATICSPrepared by: Dr. Sunita Sarangi

- The beginnings of matrices and determinants goes back to the second century BC although traces can be seen back to the fourth century BC. However it was not until near the end of the $17^{\text {th }}$ Century that the ideas reappeared and development really got underway.
It is not surprising that the beginnings of matrices and determinants should arise through the study of systems of linear equations. The Babylonians studied problems which lead to simultaneous linear equations and some of these are preserved in clay tablets which survive. For example a tablet dating from around 300 BC contains the following problem:-
There are two fields whose total area is 1800 square yards. One produces grain at the rate of $2 / 3$ of a bushel per square yard while the other produces grain at the rate of $1 / 2$ a bushel per square yard. If the total yield is 1100 bushels, what is the size of each field.
- The Chinese, between 200 BC and 100 BC, came much closer to matrices than the Babylonians. Indeed it is fair to say that the text Nine Chapters on the Mathematical Art was written during the Han Dynasty gives the first known example of matrix methods. First a problem is set up which is similar to the Babylonian example given above:-

LEARNING OBJECTIVES

- Students will be able to compute the determinant of a $2 \times 2,3 \times 3$ amd higher order square matrices.
- Students learn about minors and cofactors of the elements of a determinant.
- Students will be able to interpret the effect of a determinant to find the area of a triangle with given vertices.
*Determinant of a Square Matrix *Minors and Cofactors
\&Properties of Determinants
\& Applications of Determinants
* Area of a Triangle

Condition of Collinearity of Three Points

DETERMINANT

Every square matrix has associated with it a scalar called its determinant.

Given a matrix A, we use $\operatorname{det}(A)$ or $|A|$ to designate its determinant. We can also designate the determinant of matrix A by replacing the brackets by vertical straight lines. For example:

$$
A=\left[\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right] \quad \operatorname{det}(A)=\left|\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right|
$$

Definition 1: The determinant of a 1×1 matrix [a] is the scalar a. Definition 2: The determinant of a 2×2 matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is the scalar ad-bc.

Sign System for Expansion

of Determ nan

Sign system for order 2 and order 3 are given by

$$
\left|\begin{array}{cc}
+ & - \\
- & +
\end{array}\right|,\left|\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right|
$$

Expansion of Determinants

$$
\text { If } A=\left[a_{i j}\right] \text { is a square matrix of order } 1, \text { then }|\mathrm{A}|=\left|a_{11}\right|=a_{11}
$$ If $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ is a square matrix of order 2 , then

$$
|A|=\left[\begin{array}{l}
a_{11} \\
a_{2}
\end{array} a_{a_{22}}^{a_{22}}\right]=a_{11} a_{22}-a_{21} a_{12}
$$

Evaluate the determinant:

Solution: $\left|\begin{array}{cc}4 & -3 \\ 2 & 5\end{array}\right|=4 \times 5-2 \times(-3)=20+6=26$

Solution:-

 The determinant of a 3×3 matrix A, where $A=\left[\begin{array}{lll}a_{21} & a_{22} & a_{23}\end{array}\right.$ is a real number defined as$\operatorname{det} A=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-\left(a_{31} a_{22} a_{13}+a_{32} a_{23} a_{11}+a_{33} a_{21} a_{12}\right)$.

Solution:

Example:

Evalueate the determinant : $\left|\begin{array}{ccc}2 & 3 & -5 \\ 7 & 1 & -2 \\ 3 & 4 & 1\end{array}\right|$
$\left|\begin{array}{ccc}2 & 3 & -5 \\ 7 & 1 & -2 \\ 3 & 4 & 1\end{array}\right|=2\left|\begin{array}{cc}1 & -2 \\ 4 & 1\end{array}\right|-3\left|\begin{array}{cc}7 & -2 \\ -3 & 1\end{array}\right|+(-5)\left|\begin{array}{cc}7 & 1 \\ -3 & 4\end{array}\right|$
[Expanding along firstrow]
$=2(1+8)-3(7-6)-5(28+3)$
$=18-3-155$
$=-140$

The Minor of an Element

-The determinant of each 3×3 matrix is called a minor of the associated element.
-The symbol $M_{i j}$ represents the minor when the ith row and j th column are eliminated.

Element	Minor	Element	Minor
a_{11}	$M_{11}=\operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]$	a_{22}	$M_{22}=\operatorname{det}\left[\begin{array}{ll}a_{11} & a_{13} \\ a_{31} & a_{33}\end{array}\right]$
a_{21}	$M_{21}=\operatorname{det}\left[\begin{array}{ll}a_{12} & a_{13} \\ a_{32} & a_{33}\end{array}\right]$	a_{23}	$M_{23}=\operatorname{det}\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right]$
a_{31}	$M_{31}=\operatorname{det}\left[\begin{array}{ll}a_{12} & a_{13} \\ a_{22} & a_{23}\end{array}\right]$	a_{33}	$M_{33}=\operatorname{det}\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$

The Cofactor of an Element

Let $M_{i j}$ be the minor for element aij in an $n \times n$ matrix. The cofactor of $a_{i j}$ written $A_{i j}$ is

$$
A_{i j}=(-1)^{i+j} \cdot M_{i j \bullet}
$$

- To find the determinant of a 3×3 or larger square matrix:

1. Choose any row or column,
2. Multiply the minor of each element in that row or column by a +1 or -1 , depending on whether the sum of $i+j$ is even or odd,
3. Then, multiply each cofactor by its corresponding element in the matrix and find the sum of these products. This sum is the determinant of the matrix.

Minors:

$$
\text { If } A=\left[\begin{array}{cc}
-1 & 4 \\
2 & 3
\end{array}\right] \text {, then }
$$

$M_{11}=$ Mior of $a_{11}=3, M_{12}=$ Minor of $a_{12}=2$
$M_{21}=$ Mior of $a_{21}=4, M_{22}=$ Minor of $a_{22}=-1$
If $A=\left[\begin{array}{ccc}4 & 7 & 8 \\ -9 & 0 & 0 \\ 2 & 3 & 4\end{array}\right]$, then
$M_{11}=$ Mior of $a_{11}=$ determinant of the order 2×3 square sub - matrix is obtained by leaving first row and

$$
\text { first column of } A=\left|\begin{array}{ll}
0 & 0 \\
3 & 4
\end{array}\right|=0
$$

Similarly $M_{23}=$ minor of $a_{23}=\left|\begin{array}{ll}4 & 7 \\ 2 & 3\end{array}\right|=12-14=-2$
$M_{32}=$ minor of $a_{32}=\left|\begin{array}{cc}4 & 8 \\ -9 & 0\end{array}\right|=0+72=72 \mathrm{etc}$.

Cofactors

$$
C_{i j}=\text { Cofactor of } a_{i j} \text { in } A=(-1)^{i+j} M_{i j} \text {, where } M_{i j} \text { is minor of } a_{i j} \text { in } A
$$

Examole

$$
A=\left[\begin{array}{ccc}
4 & 7 & 8 \\
-9 & 0 & 0 \\
2 & 3 & 4
\end{array}\right]
$$

$$
C_{11}=\text { Cofactor of } a_{11}=(-1)^{1+1} M_{11}=(-1)^{1+1}\left|\begin{array}{ll}
0 & 0 \\
3 & 4
\end{array}\right|=0
$$

$C_{23}=$ Cofactorof $\left.a_{23}=(-1)^{2+3} M_{23}=-$| 4 |
| :---: |
| 2 | \right\rvert\,$=2$

12. Value of Determinant in Terms of Minors and Cofactors

$=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+a_{i 3} C_{i 3}$, for $i=1$ or $i=2$ or $i=3$

Dear children please go through this video first

Properties of Determinant

1. The value of a determinant remains unchanged, if its rows and columns are interchanged.
$\Delta=\left|\begin{array}{ccc}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|$

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \text { i.e. }|A|=\left|A^{\prime}\right|
$$

Example
Expanding the determinant along firstrow,
$\Delta=2\left|\begin{array}{cc}0 & 4 \\ 5 & -7\end{array}\right|-(-3)\left|\begin{array}{cc}6 & 4 \\ 1 & -7\end{array}\right|+5\left|\begin{array}{cc}6 & 0 \\ 1 & 5\end{array}\right|$
$=2(0(-7)-5(4)+3(6(-7)-(1)(4))+5(6(5)-1(0))$
$=2(-20)+3(-46)+5(30)=-40-138+150=-28$
2.If any two rows (or columns) of a determinant are
$\Delta=\left|\begin{array}{ccc}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|$
Expanding the determinant along first row,
$\Delta=2\left|\begin{array}{cc}0 & 4 \\ 5 & -7\end{array}\right|-(-3)\left|\begin{array}{cc}c c \\ 1 & -7\end{array}\right|+5\left|\begin{array}{cc}6 & 0 \\ 1 & 5\end{array}\right|$
$=2(0(-7)-5(4)+3(6(-7)-(1)(4))+5(6(5)-1(0))$
$=2(-20)+3(-46)+5(30)=-40-138+150=-28$

Properties:

3. If all the elements of a row (or column) is multiplied by a non-zero number k, then the value of the new determinant is k times the value of the original determinant.

$$
\left|\begin{array}{ccc}
k a_{1} & k b_{1} & k c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=k\left|\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

Which also implies

Properties:
4. If each element of any row (or column) consists of two or more terms, then the determinant can be expressed as the sum of two or more determinants.
$\left|\begin{array}{lll}a_{1}+x & b_{1} & c_{1} \\ a_{2}+y & b_{2} & c_{2} \\ a_{3}+z & b_{3} & c_{3}\end{array}\right|=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|+\left|\begin{array}{lll}x & b_{1} & c_{1} \\ y & b_{2} & c_{2} \\ z & b_{3} & c_{3}\end{array}\right|$
5. The value of a determinant is unchanged, if any row (or column) is multiplied by a number and then added to any other row (or column).

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1}+m b_{1}-n c_{1} & b_{1} & c_{1} \\
a_{2}+m b_{2}-n c_{2} & b_{2} & c_{2} \\
a_{3}+m b_{3}-n c_{3} & b_{3} & c_{3}
\end{array}\right|
$$

Properties:

6. If any two rows (or columns) of a determinant are identical, then its value is zero.

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{1} & b_{1} & c_{1}
\end{array}\right|=0
$$

$\Delta=\left|\begin{array}{lll}3 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 2 & 3\end{array}\right|$
first and third row are identical, hence we apply property 3
Example

$$
\begin{aligned}
& \Delta=3\left|\begin{array}{ll}
2 & 3 \\
3 & 3
\end{array}\right|-2\left|\begin{array}{ll}
2 & 3 \\
3 & 3
\end{array}\right|+3\left|\begin{array}{ll}
2 & 2 \\
3 & 2
\end{array}\right| \\
& =3((3)-2(3))-2(2(3)-3(3))+3(2(2)-3(2)) \\
& =3(6-6)-2(6-9)+3(4-6)=0+6-6=0
\end{aligned}
$$

7. If each element of a row (or column) of a determinant is zero, then its value is zero.

$$
\left|\begin{array}{ccc}
0 & 0 & 0 \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=0
$$

8. Let $|A|=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$ be a diagonalmatrix, then $A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]=a b c$

Example-1

Find the value of the following determinants

$$
\text { (i) }\left|\begin{array}{lll}
42 & 1 & 6 \\
28 & 7 & 4 \\
14 & 3 & 2
\end{array}\right| \quad \text { (ii) }\left|\begin{array}{ccc}
6 & -3 & 2 \\
2 & -1 & 2 \\
-10 & 5 & 2
\end{array}\right|
$$

Solution:

$$
\begin{aligned}
& \text { (i) }\left|\begin{array}{lll}
42 & 1 & 6 \\
28 & 7 & 4 \\
14 & 3 & 2
\end{array}\right|=\left|\begin{array}{lll}
6 \times 7 & 1 & 6 \\
4 \times 7 & 7 & 4 \\
2 \times 7 & 3 & 2
\end{array}\right|=7\left|\begin{array}{lll}
6 & 1 & 6 \\
4 & 7 & 4 \\
2 & 3 & 2
\end{array}\right| \text { [Taking out } 7 \text { commonfro } \mathrm{C}_{1} \text {] } \\
& =7 \times 0 \\
& =0 \\
& \text { (ii) } \mid \because C_{1} \text { and } C_{3} \text { are identical }\left|\begin{array}{ccc}
6 & -3 & 2 \\
2 & -1 & 2 \\
-10 & 5 & -2
\end{array}\right|=\left|\begin{array}{ccc}
-3 \times(-2) & -3 & 2 \\
-1 \times(-2) & -1 & 2 \\
5 \times(-2) & 5 & 2
\end{array}\right| \\
& =(-2)\left|\begin{array}{ccc}
-3 & -3 & 2 \\
-1 & -1 & 2 \\
5 & 5 & 2
\end{array}\right| \quad\left[\text { Taking out }-2 \text { commonfrom } C_{1}\right] \\
& =(-2) \times 0
\end{aligned} \quad\left[\because C_{1} \text { and } C_{2} \text { are identidal }\right] \quad .
$$

Example-2
 $$
-
$$

 Evalueate the determinant $\left.1 \begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array} \right\rvert\,$Solution:

$$
\left|\begin{array}{lll}
1 & a & a+b+c
\end{array}\right|
$$

[Applying $C_{2} \rightarrow C_{2}+C_{3}$]
[Taking $(a+b+c)$ commonfrom C_{3}]

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & a & b+c \\
1 & b & c+a \\
1 & c & a+b
\end{array}\right|= \\
& =(a+b+c)\left|\begin{array}{c}
1 \\
1 \\
1
\end{array}\right| \\
& =(a+b+c) \times 0 \\
& =0
\end{aligned}
$$

$\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|=\left\lvert\, \begin{array}{lll}1 & a & a+b+c \\ 1 & b & a+b+c \\ 1 & c & a+b+c\end{array}\right.$
$=(a+b+c)\left|\begin{array}{lrr}1 & a & 1 \\ 1 & b & 1 \\ 1 & c & 1\end{array}\right|$
$[$ TTaking $(a+b+c)$ comm
$=(a+b+c) \times 0$
$=0$
$\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|=\left\lvert\, \begin{array}{lll}1 & a & a+b+c \\ 1 & b & a+b+c \\ 1 & c & a+b+c\end{array}\right.$
$=(a+b+c)\left|\begin{array}{lrr}1 & a & 1 \\ 1 & b & 1 \\ 1 & c & 1\end{array}\right|$
$[$ TTaking $(a+b+c)$ comm
$=(a+b+c) \times 0$
$=0$
$\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|=\left\lvert\, \begin{array}{lll}1 & a & a+b+c \\ 1 & b & a+b+c \\ 1 & c & a+b+c\end{array}\right.$
$=(a+b+c)\left|\begin{array}{lrr}1 & a & 1 \\ 1 & b & 1 \\ 1 & c & 1\end{array}\right|$
$[$ TTaking $(a+b+c)$ comm
$=(a+b+c) \times 0$
$=0$

五

Example - 3
Evaluate the determinant: $\left|\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ b c & c a & a b\end{array}\right|$

Solntion=

Wehave $\left|\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ b c & c a & a b\end{array}\right|$

$$
=(a-b)(b-c)\left|\begin{array}{ccc}
1 & 1 & c \\
a+b & b+c & c \\
-c & -a & a b
\end{array}\right| \quad\left[\begin{array}{cc}
\text { Taking } a-b) \text { and } b-c) c o m m o n \\
\text { from } c_{1} \text { and } c_{2} \text { respectively }
\end{array}\right]
$$

$=-c a-b)(b-c)(c-a)\left|\begin{array}{ccc}0 & 1 & c \\ 1 & b+c & c^{2} \\ 1 & -a & a b\end{array}\right|$
$=-(a-b) c b-a c c-a)\left|\begin{array}{ccc}a & 1 & c \\ a & a+b+c & c^{2}-a b \\ 1 & -a & a b\end{array}\right|$

$$
\left[\text { Applying } R_{2} \rightarrow R_{z}-R_{3}\right]
$$

Nowexpartirig alorigct we get

Example-4

Withont exparndirng the deterrmirnarit.
prove that $\left|\begin{array}{ccc}3 x+y & 2 x & x \\ 4 x+3 y & 3 x & 3 x \\ 5 x+6 y & 4 x & 6 x\end{array}\right|=x^{3}$
SOllution=
 $=x^{3}\left|\begin{array}{lll}3 & 2 & 1 \\ 4 & 3 & 3 \\ 5 & 4 & 6\end{array}\right|+x^{3} y\left|\begin{array}{lll}1 & 2 & 1 \\ 3 & 3 & 3 \\ 6 & 4 & 6\end{array}\right|$

$=-=\left|\begin{array}{lll}3 & 3 & 1 \\ 5 & 3 & 5 \\ 5 & 4\end{array}\right|$

$=x^{3}<43-2$
[巨xparncirng alorng<i]
$=\alpha^{3}=\mathrm{FB}_{\mathrm{B}} \mathrm{H} . \leq$

Area of the triangle $\Delta=\frac{1}{2} \times$ base \times height

$$
\begin{aligned}
& =\frac{1}{2} \times 10 \times 6 \\
& =30 \text { sq. wnits }
\end{aligned}
$$

Vertices are $A(4,9), B(1,3), C(11,3)$
Ara of the triangle
$D=\frac{1}{2}\left|\begin{array}{ccc}4 & 9 & 1 \\ 1 & 3 & 1 \\ 11 & 3 & 1\end{array}\right|$
$=\frac{1}{2}\left[\begin{array}{r}4(3-3)-9(1-11) \\ +1(3-33)]\end{array}\right.$
$=\frac{1}{2}(90-30)$
$=30 \mathrm{sq}$ uni s

Applications of Determinants (Area of a Triangle)

- The area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is given by the expression

Example:
Find the area of a triangle whose vertice are $(-1,8),(-2,-3)$ and $(3,2)$.

Condition of Collinearity of Three Points

- If are three points, then $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$
\Leftrightarrow Area of triangle $A B C=0$

Proberties

- The value of determinant remains unaltered if its rows and columns are

DETERMINANTS

 nterchangedIf two rows (or columns) of a determinant are interchanged, the value of the determinant is multiplied by -1 .

- If any two rows (or columns) o - If the elements of a row (or column) of a determinant are multiplied by any scalar, then the value of the new determinant is equal to same scalar times the value of the original determinant.
- If each element of any row (or column) of a determinant is the
sum of two numbers, then the determinant is expressible as
the sum of two determinants of the same order.
Note : (i) If $|A|=0$, then the matrix is singular.
(ii) If $|A| \neq 0$, then the matrix is non-
- singular.

Aclloint of a Matrix

- Propertles 0

Let $B=\left[A_{i j}\right]$ be the matrix of the transpose of B is called the $\quad, \operatorname{adj}(A B)=(\operatorname{adj} B) \cdot(\operatorname{adj} A)$ adjoint of matrix A

- $\operatorname{adj}(A B)=(\operatorname{adj} B)-(\operatorname{adj} A)$
- $|\operatorname{ladj} A|=|A|^{n-1}$, where n is the
\quad order of A. $-\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A$
$\begin{aligned}- & \text { adj }(\operatorname{adj} A)=|A|^{n-2} A \\ & \operatorname{adj}(\operatorname{adj} A)\left|=|A|^{(n-1)^{2}}\right.\end{aligned}$

$a_{i j}$ and denoted by $A_{i j}$

nverse of For any square matrix A, inverse of A is defi
as $A^{-1}=\frac{1}{1}(\operatorname{adj} A)$. - $|A| \neq 0$

Area of a Triangle
Let $A B C$ be a triangle with vertices $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$
and $C\left(x_{3}, y_{3}\right)$, then area of $\triangle A B C$ is

