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DETERMINANTS



• The beginnings of matrices and determinants goes back to the second century BC 
although traces can be seen back to the fourth century BC. However it was not 
until near the end of the 17th Century that the ideas reappeared and 
development really got underway.
It is not surprising that the beginnings of matrices and determinants should arise 
through the study of systems of linear equations. The Babylonians studied 
problems which lead to simultaneous linear equations and some of these are 
preserved in clay tablets which survive. For example a tablet dating from around 
300 BC contains the following problem:-
There are two fields whose total area is 1800 square yards. One produces grain at 
the rate of 2/3 of a bushel per square yard while the other produces grain at the 
rate of 1/2 a bushel per square yard. If the total yield is 1100 bushels, what is the 
size of each field.

• The Chinese, between 200 BC and 100 BC, came much closer to matrices than 
the Babylonians. Indeed it is fair to say that the text Nine Chapters on the 
Mathematical  Art was written during the Han Dynasty gives the first known 
example of matrix methods. First a problem is set up which is similar to the 
Babylonian example given above:-



LEARNING OBJECTIVES



SUB-TOPICS:-

Determinant of a Square Matrix 

Minors and Cofactors 

Properties of Determinants 

Applications of Determinants 

Area of a Triangle 

Condition of Collinearity of Three 
Points 



Every square matrix has associated with it a scalar called its determinant. 

Given a matrix A, we use det(A) or |A| to designate its determinant. 

We can also designate the determinant of matrix A by replacing the 
brackets by vertical straight lines. For example:

Definition 1: The determinant of a 1x1 matrix [a] is the scalar a.

Definition 2: The determinant of a 2x2 matrix          is the scalar ad-bc.
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Expansion of Determinants
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Solution:
The determinant of a 3 × 3 matrix A, where as definednumber  real a is 
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Example:
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•The determinant of each 3 × 3 matrix is called a minor of the 
associated element. 

•The symbol Mij represents the minor when the ith row and jth 
column are eliminated. 



The Cofactor of an Element 

Let Mij be the minor for element aij in an n × n matrix. The cofactor of 
aij, written Aij, is

• To find the determinant of a 3 × 3 or larger square matrix: 

1. Choose any row or column, 

2. Multiply the minor of each element in that row or column by a +1 or 
–1, depending on whether the sum of i + j is even or odd, 

3. Then, multiply each cofactor by its corresponding element in the 
matrix and find the sum of these products. This sum is the determinant 
of the matrix. 
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Value of Determinant 
in Terms of Minors 
and Cofactors
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Dear children please go through this video first

https://youtu.be/hAh93-VHyu0

https://youtu.be/hAh93-VHyu0
https://youtu.be/hAh93-VHyu0
https://youtu.be/hAh93-VHyu0


1. The value of a determinant remains unchanged, if 
its rows and columns are interchanged.

2.If any two rows (or columns) of a determinant are 
interchanged, then the value of the determinant is 
changed by minus sign.

' i.e. 

321

321

321

333

222

111

AA

ccc

bbb

aaa

cba

cba

cba



] [Applying 12

333

111

222

333

222

111

RR

cba

cba

cba

cba

cba

cba



2815013840)30(5)46(3)20(2

))0(1)5(6(5))4)(1()7(6(3)4(5)7(0(2

51

06
5

71

46
)3(

75

40
2

 row,first  alongt determinan  theExpanding

751

406

532



















Properties of Determinant
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Properties:
3. If all the elements of a row (or column) is multiplied by a non-zero 
number k, then the value of the new determinant is k times the value of 
the original determinant.

Which also implies
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Properties:
4. If each element of any row (or column) consists 
of two or more terms, then the determinant can be 
expressed as the sum of two or more 
determinants. 

5. The value of a determinant is unchanged, if any 
row (or column) is multiplied by a number and then 
added to any other row (or column).
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6. If any two rows (or columns) of a determinant are identical, 

then its value is zero.

7. If each element of a row (or column) of a determinant is zero, 

then its value is zero. 

8. Let                                 be a diagonalmatrix, then
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Example-1 Find the value of the following determinants
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Example-2
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Applications of Determinants 
(Area of a Triangle)

• The area of a triangle whose vertices are (x1 , y1 ), (x2 , y2 ) 
and (x3 , y3 ) is given by the expression
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Lorem ipsum dolor sit amet, consectetuer adipiscing elit. 
Maecenas porttitor congue massa. Fusce posuere, magna 
sed pulvinar ultricies, purus lectus malesuada libero, sit amet 
commodo magna eros quis urna.
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Find the area of a triangle whose vertices are 
(-1,8),(-2,-3) and (3,2).
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Condition of Collinearity of Three Points

• If are three points, then A, B, C are collinear A (x1 , y1 ), B (x2 , y2 ) 
and C (x3 , y3 )
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