DAV INSTITUTIONS ODISHAZONE 1

Aooy without Laughter
 Woug

DEPT. OF MATHEMATICS
DAV Public School Pokhariput,
Bhubaneswary Odisha

LEARNING OBJECTIVES:-

- Cost estimation, Sale projection and factory problems can be solved by using matrix.
- Expressing in vector form
- Expressing day to day life problems in matrix form
- Matrix notation and operations are used in electronic spreadsheet, advanced statistics.
- Expressing simultaneous linear equations in matrix form.

Defination of matrix:-

- A matrix is an ordered rectangular array of numbers that represent some data (Plural = matrices)
- A matrix on its own has no value - it is just a representation of data
- Could be data associated with manufactured quantity in a factory, speed of a rocket etc
- Forms the basis of computer programming
- A matrix is used in solving equations that represent business problems

Types of matrix :-

(Row matrix: it having only one row Ex $\begin{array}{ccc}{\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]}\end{array}$

- Column matrix: it having only one column Ex $\left[\begin{array}{l}3 \\ 2 \\ 0\end{array}\right]$
- Zero matrix: A matrix is called a zero matrix if all the entries are 0 Ex

$$
\left\lvert\,\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right.
$$

- Square matrix: if number of rows is equal to number of columns

- Note: if number of rows $=$ no of number columns $=n$, is called square matrix of order n or order n
- order 2

$$
\left[\begin{array}{cc}
5 & 7 \\
-2 & 5
\end{array}\right]
$$

order 3
$\left[\begin{array}{lll}5 & 7 & 8 \\ 6 & 4 & 8 \\ 1 & 7 & 0\end{array}\right]$

Types of matrix :-

- Diagonal matrix: A square matrix is called diagonal matrix, if all of its nondiagonal elements are zero.
- EXAMPLE

- Scalar matrix: A square matrix is called scalar matrix if diagonal elements are same and other are " 0 "
- EXAMPLE

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

- Identity/ unit matrix : A square matrix is identity if diagonal entries are 1 and other are 0.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

REPRESENTATION OF MATRIX

$A=\left[\mathrm{aij}_{\mathrm{i}}^{\mathrm{aNN}}\right.$,

Qij $=\quad$ element in row' i ' and column ' j ', where ' a ' is an element in the matrix

Eg: $23=$ element in $2^{\text {nd }}$ row and 3 rd column $=9$

Examples of Matrices

\(\left[\begin{array}{cc}2 \& 4

5 \& 7\end{array}\right] \quad\)| This is an example of a 2×2 matrix |
| :--- |

$\left[\begin{array}{lll}2 & 3 & 6 \\ 72 & 3 & 9\end{array}\right]$

What is the dimension or der of this Matrix?

What is a_{12}

\(\left[\begin{array}{cccc}7 \& 9 \& II \& 5

9 \& 0 \& 3 \& 6\end{array}\right]\)| What is the dimension or order |
| :--- |
| of this Matrix? |
| What is a_{12} ? |

Addition /subtraction: when two matrices of same order are added/ subtracted, their corresponding entries are added/subtracted

Addition operation on Matrices

$\left.\begin{array}{lll}2 & 45 & 72 \\ 6 & 3 & 0 \\ 7 & 9 & 10\end{array}\right] \quad\left[\begin{array}{lll}\hline 40 & 7 & 9 \\ 6 & 1 & 2 \\ 7 & 2 & 8\end{array}\right]$
$\left[\begin{array}{ccc}(2+40) & (45+7) & (72+9) \\ (6+6) & (3+1) & (0+2) \\ (7+7) & (9+2) & (10+8)\end{array}\right]=\left[\begin{array}{lll}47 & 52 & 81 \\ 12 & 4 & 2 \\ 14 & 11 & 18\end{array}\right]$

Only Matrices of the same order(comparable) can be added!! Rule I: $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$

Question Set 1

।. Add the following matrices:
$\left[\begin{array}{lll}32 & 4 & 60 \\ 29 & 2 & 4 \\ 21 & 65 & 7\end{array}\right]$ 나 $\left[\begin{array}{lll}22 & 5 & 8 \\ 10 & 8 & 12 \\ 9 & 7 & 2\end{array}\right]$
2. Subtract the following matrices:
$\left[\begin{array}{ccc}18 & 26 & 12 \\ 10 & 11 & 12 \\ 8 & 10 & 16\end{array}\right] \quad\left[\begin{array}{lll}7 & 2 & 15 \\ 13 & 3 & 5 \\ 5 & 8 & 9\end{array}\right]$

Multiplication of a matrix by a scalar

If K is any number and A is a given matrix, Then KA is the matrix obtained by multiplying each element of A by K.
K is called 'Scalar'. Eg: if $K=2$

$A=$| 2 |
| :--- |
| 1 |
| 2 |

4
3
5
5
2
1
$\left[\begin{array}{l}4 \\ 2 \\ 4\end{array}\right.$
8
6
10
$\left.\begin{array}{l}10 \\ 4 \\ 2\end{array}\right]$

MULTIPLICATION OF MATRICES

- The product $A B$ of two matrices A and B is defined, if the number of columns of A is equal to the number of B.
- If $A B$ is defined then $B A$ need not be defined. In particular both A and B are square matrices of same order then $A B$ and $B A$ are defined.
- In general $A B \neq B A$
- Observation : Two non zero matrices multiplication is zero matrix

Ex: $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] 2 \times 2 \times\left[\begin{array}{rr}-1 & 2 \\ 0 & 1 \\ 2 & 1\end{array}\right]_{3 \times 2}$ here multipication is not possible. \quad Ex: $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] 2 \times 2\left[\begin{array}{l}2 \\ 1\end{array}\right]_{2 \times 1}$ here multiplication possible, order of new matrix

$$
\text { is } 2 \times 1 \text {. }
$$

If order of first matrix A is $\mathrm{m} \times n$ and that of B is $\mathrm{n} \times p$, then $\mathrm{A} . \mathrm{B}$ is possible of order $\mathrm{m} \times p$.

Multiplication of Matrices - 2

$\left[\begin{array}{l}(2 x 4+3 x|+| x 5) \\ (4 x 4+3 x \mid+2 x 5)\end{array}\right.$

16
29

13
15
$(2 \times 2+3 \times 0+\mid \times 2)$
$(4 \times 2+3 \times 0+2 \times 2)$

AxB
2×2 matrix

MLTIPLICATION OF MATRIX

Procedure for multiplication:

EX: $\left[\begin{array}{cc}1 & 2 \\ -1 & 0\end{array}\right] \times\left[\begin{array}{cc}4 & 0 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cc}1.4+2 .-1 & 1.0+2.2 \\ -1.4+0 .-1 & -1.0+0.2\end{array}\right]=\left[\begin{array}{cc}2 & 4 \\ -4 & 0\end{array}\right]$
EX: $\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right] \times\left[\begin{array}{l}1 \\ 3\end{array}\right]=\left[\begin{array}{c}1.1+2.3 \\ 1.1+1.3\end{array}\right]=\left[\begin{array}{l}6 \\ 4\end{array}\right]$

Multiplication of Matrices: - 1

$$
\begin{aligned}
& (|x|+3 \times 5+5 \times 2) \\
& (2 \times \mid+4 \times 5+2 \times 2) \\
& (2 x \mid+5 \times 5+6 \times 2)
\end{aligned}
$$

$$
\left.\begin{array}{l}
(\mid \times 3+3 \times 2+5 \times 3) \\
(2 \times 3+4 \times 2+2 \times 3) \\
(2 \times 3+5 \times 2+6 \times 3)
\end{array}\right]
$$

$\left[\begin{array}{lll}25 & 26 & 24 \\ 32 & 26 & 20 \\ 58 & 39 & 34\end{array}\right]$

Multiplication of Matrices - 3

$\left(4 x^{3}+2 x^{3}\right)$
$(4 x \mid+2 x 2)$
($|x|+0 \times 2$)

$(5 \times 3+2 \times 3)$
18
3
21

Rule 2: Ax B

B

A
2×3 matrix

B xA

Question Set 1

3. Multiply the following matrices:

2
0
1

$\left.\begin{array}{ll}3 & 4 \\ 10 & 3 \\ 0 & 1\end{array}\right]$

$\left.\begin{array}{ll}0 & 5 \\ 6 & 9 \\ 2 & 0\end{array}\right]$
4. $\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right] \quad\left[\begin{array}{lll}2 & 3 & 1 \\ 1 & 2 & 10\end{array}\right]$

Is it possible to compute No.5?! No!Why?

Transpose of a Matrix

Q. Verify $(A B)^{\prime}=B^{\prime} \times A^{\prime}$
I. If $A=\left[\begin{array}{lll}2 & 4 & 0 \\ 3 & 9 & 6\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 4 \\ 2 & 8 \\ 1 & 3\end{array}\right]$

Q. Verify $(A+B)^{\prime}=A^{\prime}+B^{\prime}$

$$
\text { If } A=\left[\begin{array}{ccc}
3 & -1 & 0 \\
4 & 2 & 1
\end{array}\right] \text { then } A^{\prime}=\left[\begin{array}{cc}
3 & 4 \\
-1 & 2 \\
0 & 1
\end{array}\right]
$$

If $A=\left[\begin{array}{ccc}3 & -1 & 0 \\ 4 & 2 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}3 & 6 & 5 \\ -1 & 5 & 9\end{array}\right]$

Symmetric matrix: A square matrix A is called symmetric if $A^{T}=A$
Remark: In a symmetric matrix, the entries opposite to diagonal entries are same. $a_{i j}=a_{j i}$
$\mathbf{E X}=$ i) $\left[\begin{array}{cc}1 & -1 \\ -1 & 3\end{array}\right]$

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 5 \\
3 & 5 & 4
\end{array}\right]
$$

Skew symmmetric matrix : A square matrix A is called skew symmetric if $A^{T}=-A$ or $a_{i j}=-a_{j i}$. In skew symmetric matrix diagonal elements are ${ }^{c} O "$ and entries opposite to main diagonal are same but opposite sign.
EX: $\left.\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \quad$ iit $\left[\begin{array}{ccc}0 & 2 & 3 \\ -2 & 0 & -5 \\ -3 & 5 & 0\end{array}\right]$

Question Set 1

6. Find the transpose of the following matrices and verify that $(A+B)^{\prime}=A^{\prime}+B^{\prime}$

Hint: Find $A+B, \quad(A+B)^{\prime}, A^{\prime}$ and B^{\prime} and verify
7. If D is a matrix where first row = number of table fans and second row $=$ number of ceiling fans factories A and B make in one day. If a week has 5 working days compute 5A. What does 5A represent?
$D=\begin{array}{r}10 \\ 30\end{array}$
$\left.\begin{array}{l}20 \\ 40\end{array}\right]$

Question Set 1

9. Two shops have the stock of large, medium and small sizes of a toothpaste. The number of each size stocked is given by the matrix A where
\(\left.A=1 . \sqrt{Large} \begin{array}{lll}Medium \& Small

90 \& 240 \& 120

90 \& 300 \& 210\end{array}\right] \quad\)| shop no.1 |
| :--- |
| shop no 2 |

The cost matrix B of the different size of the toothpaste is given by

$$
\begin{aligned}
& B= \\
& \text { Find the investment in toothpaste by each shop } \\
& \text { Answer: }[3820] \text {-- Investment by shop no I } 5520 \\
& \text {-- Investm en tby shop no } 2
\end{aligned}
$$

Question Set 1

8.

For the matrix
$A=\left[\begin{array}{cc}4 & 5 \\ 2 & 1 \\ -5 & 2\end{array}\right.$
$\left.\begin{array}{l}6 \\ 3 \\ 2\end{array}\right] \quad$ and $B=\quad\left[\begin{array}{cc}7 & 9 \\ 10 & 2\end{array}\right.$
Multiply by the Matrix I =

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

What is A.I and I.B ?

Identity Matrix

- If you were to multiply 'a' by 'I', you would get 'a'. Eg: $\quad 2 \times I=2 \times I=2$
- The 'identity' matrix (i) is the equivalent of ' l ' in basic math If A is a matrix and I is an identity Matrix,
- Then $\mathrm{A} x \mathrm{I}=\mathrm{A}$ and $\mathrm{I} \times \mathrm{A}=\mathrm{A}$. Identity Matrices
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

To find inverse by using elementary Row

transformations.

Step 1: \quad Write A = IA
Step 2: Apply various row operations on left hand side and apply same operations to I on right side but not to A on right side.
Step3: From step 2 we get a new matrix equation $I=B A$. Hence $B=A^{-1}$

To find inverse by using elementary Column

 transformations.Step 1: Write A = AI
Step 2: Apply various Column operations on left hand side and apply same operations to I on right side but not to A on right side.
Step3: From step 2 we get a new matrix equation $I=A B$. Hence $B=A^{-1}$

INVERSE OF ORDER 2 MATRIX

Exmples:

Using elementary row transformation find the inverse of $\left[\begin{array}{ll}6 & 5 \\ 5 & 4\end{array}\right]$
Ans: Given $A=\left[\begin{array}{ll}6 & 5 \\ 5 & 4\end{array}\right]$
Consider

$\Rightarrow\left[\begin{array}{ll}6 & 5 \\ 5 & 4\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
Applying $\mathbf{R}_{1} \rightarrow \mathbf{R}_{1}-\mathbf{R}_{2}$
$\left[\begin{array}{cc}1 & 1 \\ 5 & 4\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right] A$
Applying $\mathbf{R}_{2} \rightarrow \mathbf{R}_{2}-5 \mathbf{R}_{1}$
$\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ -5 & 6\end{array}\right] A$
Applying $\mathbf{R}_{1} \rightarrow \mathbf{R}_{1}+\mathbf{R}_{2}$
$\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]=\left[\begin{array}{ll}-4 & 5 \\ -5 & 6\end{array}\right] A$
Applying $R_{2} \rightarrow(-1) R_{2}$
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}-4 & 5 \\ 5 & -6\end{array}\right] A$
Hence $A^{-1}=\left[\begin{array}{cc}-4 & 5 \\ 5 & -6\end{array}\right]$

INVERSE OF ORDER 3 MATRIX

- Using elementary row transformation find the inverse of $\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$ Ans:Given $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$
Consider $\mathrm{A}=\mathrm{I} \mathbf{A}$
$\Rightarrow\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $\mathbf{R}_{1} \rightarrow 3 \mathbf{R}_{1}$
$\left[\begin{array}{ccc}6 & 0 & -3 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $\mathbf{R}_{1} \rightarrow \mathbf{R}_{1}-\mathbf{R}_{2}$
$\left[\begin{array}{ccc}1 & -1 & -3 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}3 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $\mathbf{R}_{1} \rightarrow \mathbf{R}_{1}+\mathbf{R}_{\mathbf{3}}$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}3 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $\mathbf{R}_{2} \rightarrow \mathbf{R}_{\mathbf{2}}-5 \mathrm{R}_{1}$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 0 & 0 & 1\end{array}\right] A$
Applying $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3\end{array}\right]=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 15 & -6 & 6\end{array}\right] A$
Applying $R_{3} \rightarrow \frac{1}{3} \mathbf{R}_{3}$
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right] A \quad$. Hence $A^{-1}=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$

Inverse of a Matrix

In basic math: $22=1$ and $/ 2 \times 2=1$.
Dividing 2 by two is the same as multiplying 2 by I/2.The net result is I.

A similar concept is the 'inverse' of a matrix. If A is a matrix, then A is the inverse such
that $A \times A=I$ (identity matrix)

$$
-1
$$

If A has an inverse(A) then A is said to be 'invertible' A. $\mathbf{A}=\mathbf{A} \mathbf{A}=1$

square matrix
$A=\left[\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33}\end{array}\right]$ then detenninant of A or det $A \operatorname{Al} A$
$\|A\|=x_{11}\left(x_{22} x_{33}-x_{32} x_{23}\right)-x_{12}\left(x_{21} x_{33}-x_{31} x_{23}\right)+x_{13}\left(x_{21} x_{32}\right.$ $\left.x_{31} x_{22}\right) \neq 0$ then inverse of matrix exist i.e $A-1$
$A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 5 \\ 3 & 5 & 4\end{array}\right]=1(-1.4-5.5)-2(2.4-3.5)+3(2.5-3 .-1)=117$
here inverse of A exist. $\left.\operatorname{So} A-1=\frac{\operatorname{cadj} A}{|A|}=\|A\| \neq O \right\rvert\,$

$$
A-1=\frac{\operatorname{cac} i A}{1 A 1}=\frac{1}{11}\left[\begin{array}{ccc}
-29 & 7 & 13 \\
73 & 1 & 5 \\
13 & -5
\end{array}\right]=\left[\begin{array}{ccc}
\frac{-29}{11} & \frac{7}{11} & \frac{13}{11} \\
\frac{11}{11} & \frac{1}{11} & \frac{1}{11} \\
\frac{13}{11} & \frac{5}{11} & \frac{-5}{11}
\end{array}\right]
$$

If the simultaneous equation are of the form
$a_{11} x+a_{12} y^{+}+a_{13} z=b_{1} \quad$ it can also be represented in matrix form $A X=$ B

$$
\begin{array}{ll}
a_{21} x+a_{22} y+a_{23} z=b_{2} & \text { where } A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \times=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] B=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
a_{31} x+a_{32} y+a_{33} z=b_{3} \quad \text { so } X=A-1 \quad B=\frac{a d j A}{|A|} B
\end{array}
$$

$$
\begin{aligned}
& \operatorname{adi} A=\left[\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{23} & A_{33}
\end{array}\right]=\left[\begin{array}{cc}
-29 & 7 \\
7 & 13 \\
13 & 5
\end{array}\right] \\
& A_{11}=-29 A_{12}=7 A_{13}=13 A_{21}=A_{2} A_{2}=-5 A_{23}=A_{31} A_{3} \\
& A_{32}=1 A_{33}=-5
\end{aligned}
$$

$E x:$ Solve by matrix method $x+y+z=6,2 x-y+5 z=6,3 x+5 y+4 z=12$
Ans Here $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 5 \\ 3 & 5 & 4\end{array}\right] X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] B=\left[\begin{array}{c}6 \\ 6 \\ 12\end{array}\right]$

$$
|A|=\left|\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 5 \\
3 & 5 & 4
\end{array}\right|=1(-1.4-5.5)-2(2.4-3.5)+3(2.5-3 .-1)=11 \neq 0
$$

So inverse exist, Previous example it is found that

$$
A^{-1}=\frac{\operatorname{adj} A}{|A|}=\frac{1}{11}\left[\begin{array}{ccc}
-29 & 7 & 13 \\
7 & -5 & 5 \\
13 & 1 & -5
\end{array}\right]=\left[\begin{array}{ccc}
\frac{-29}{11} & \frac{7}{11} & \frac{13}{11} \\
\frac{7}{11} & \frac{-5}{11} & \frac{1}{11} \\
\frac{13}{11} & \frac{5}{11} & \frac{-5}{11}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=x=-1-1=\left[\begin{array}{lll}
\frac{-29}{11} & \frac{7}{11} & \frac{13}{11} \\
\frac{7}{11} & \frac{1}{11} & \frac{1}{11} \\
\frac{11}{11} & \frac{5}{11} & \frac{15}{11}
\end{array}\right]\left[\begin{array}{c}
6 \\
62
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

$\operatorname{Sox} x=1, y=1$ and $z=1$
Singular matrix : A square matrix is said to be singular if det $(A)=0$ Ex: Let $A=\left[\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right]$ here $\operatorname{det}(A)=4-4=0$, so given matrix is singular. Non singular Natrix: A square matrix is said to be non singular if $\operatorname{det}(A) \neq 0$,

Note : Inverse of a square matrix exist in non singular matrix.|

KEY POINTS

- A matrix is an ordered rectangular array of numbers or functions.
- A matrix having m rows and n columns is called a matrix of order mxn
- A is a diagonal matrix if its non diagonal elements are zero.
- A is a identity matrix if diagonal elements are 1 and non diagonal elements are 0
- A is zero matrix if all elements are zero.
- Matrix addition is commutative , associative over same order. $A+B=B+A, \quad(A+B)+C=A+(B+C)$

KEY POINTS

- $k(A+B)=k A+k B, k$ is constant A, B are of same order
- If order of first matrix A is m and that of B is n, then $A . B$ is possible of order m
- Matrix multiplication is not commutative.
- A matrix is symmetric if $\quad a_{i j}=a_{j i}$
- If a square matrix is invertible if $\operatorname{det} A \neq 0$, or singular matrix
- if $\operatorname{det} A=0$, inverse of a square matrix doesn't exist.or non singular matrix

$$
\begin{aligned}
& (K A)^{T}=K A^{T} \\
& (A \pm B)^{T}=A^{T} \pm B^{T} \\
& \left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1} \\
& \left(A^{T}\right)^{T}=A
\end{aligned}
$$

CONCEPT MAPPING

Oriler al a

Matrix

A matrix having m nowx and n columns is called a matrix of order m \times re.

Trantpose

Transpose is obtained by interchanging rows and columns. If $A=\left[a_{4,}\right]_{m \times M}$ then A^{\prime} or $A^{T}=\left[a_{b j}\right]_{n+x}$
$\left(A^{\prime}\right)^{\prime}=A$
$(A B)^{\prime}=B^{\prime} A^{\prime}$

Properiles

$\{A \pm B)^{\prime}$
$=A^{\prime} \perp B^{\prime}$

Sparial Matrices

Nilpotent Matrix : $A^{k}=0$ and $A^{k-1} \neq 0, k \in z^{1}$ $\Rightarrow|A|=0$, order $=$ Least value of k

Involutory Matrix : $\boldsymbol{A}^{2}=1 \Rightarrow|A|= \pm 1$
Orthogonal Matrix $: A A^{T}=\Lambda^{T} A=I$

$$
\Rightarrow|A|= \pm 1
$$

Periodic Matrix : $A^{k}=A$

$$
\Rightarrow|A|=0,1, \text { arder }-k-1
$$

Idempotent Matrix: $A^{2}=A \Rightarrow|A|=0,1$

Unitary Matrix: $A_{A} A^{B}=A_{A} A_{A}=I$

Symmetric Matrix $=A^{*}=A$
Skew Symmetric Matrix : $A^{\prime}=-A$

Inverse

If A and B are two square matric such that $A B=B A=I_{2}$ then B is th inverse matrix of A and is denote by A^{-1} and A is the inverse of B

SUBTECT-MNATHENMATTCSECTASS-XTI CHAPTER-3 (NIATERI)
 WORICSHEIEICRASICO

Group - A
[Dbiective type]
Find the values of x, if $\left[\begin{array}{ll}3 x+y & -y \\ 2 y-x & 3\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 5 & 3\end{array}\right]$.
If A is symmmetric and skev symmmetric then A is
A square matrix A is said to be skewn-symmmetric if
ff A is a matriz of Order 3>
For a $3<3$ matrix, $A=\left[x_{i j}\right]$ whose elements ane given by $x_{i j}=\frac{\|j-j\|}{2}=$ write the value of x_{23}
6. Write onder of product matrix $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\left[\begin{array}{ll}2 & 3\end{array}\right]$.
7. If a matrix has S elements, then write all possible ondexs it can have
s. If A is a squame matrix such that $A \geq=A$, then write value of $\quad A-A+B D$
9. If and B ane squame matrices such that ablba, find the value of $C A+B)$
10. If A and B ane squane matrices of same onder, find $(A+B)(A-B)$

11 . Let A and B be two matrices of onder $3<2$ and $2<4$, then write the onder of B matrix.
12. Write the onder of i) $\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & -1\end{array}\right]$ ii) [-1]
13. If matrix $A=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$, then write $A . A$.

14 . Write the mumber of all possiblematrices of onder $2>2$ with each entry 2
15 . For a $2>2$ matrix, $A=\left[a_{i j}\right]$ whose elenents ane given by $a_{i j}=\frac{i}{j}$ write the value of
x_{12}.
16. Find the tramspose of matrix $\left[\begin{array}{ccc}-1 & 9 & 5 \\ 2 & 3 & 5 \\ 3 & 5 & 7\end{array}\right]$

17 If $3 A-B=\left[\begin{array}{ll}5 & 0 \\ 1 & 1\end{array}\right]$ and $B\left[\begin{array}{ll}4 & 3 \\ 2 & 5\end{array}\right]$ find the value of A

18. If $\mathrm{A}=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$ then find value of $\mathrm{A} A^{\prime}$

19. If $A^{\prime}=\left[\begin{array}{cc}3 & 4 \\ -1 & 2 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right]$ then find $A^{\prime}-B^{\prime}$
20. If $\left[\begin{array}{cc}x-y & z \\ 2 x-y & w\end{array}\right]=\left[\begin{array}{cc}-1 & 4 \\ 0 & 5\end{array}\right]$, then find value of $x+y$.
21. If A is a matrix of order 3×4 and B is a matrix of order 4×3, then find the order of matrix AB .
22. If $\left(\begin{array}{cc}2 x+y & 3 y \\ 0 & 4\end{array}\right)=\left(\begin{array}{ll}6 & 0 \\ 6 & 4\end{array}\right)^{\prime}$, then find the value of x.
23. If A is a matrix of order 3×2, then the order of the matrix $A /$ is \qquad
24. For what value of x, is the matrix $\left[\begin{array}{ccc}0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0\end{array}\right]$ a skew-symmetric matrix.
25. If $\left[\begin{array}{cc}x . y & 4 \\ z+6 & x+y\end{array}\right]=\left[\begin{array}{cc}8 & w \\ 0 & 6\end{array}\right]$, then write the value of $(x+y+z)$.
26. Write the number of all possible matrices of order 2×2 with each entry 1,2 or 3
27. Write order of product matrix $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]$.
28. If A and B are of same order write $(A B)^{\prime}$ is
29. Construct a matrix A is of order 2 such that $a_{i j}=2$ for $\mathrm{i} \neq j$ and $a_{i j}=0$ for $\mathrm{i}=\mathrm{j}$.
30. If A and B are of same order write $(A B)^{\prime}$ is

31. Find the value of $a b=$ and d if $\left[\begin{array}{ccc}a+\frac{b}{a} & +c & \frac{c}{a} \\ b & \frac{c}{a} & c \\ a & d & d\end{array}\right]=\left[\begin{array}{l}4 \\ \frac{1}{d} \\ \frac{1}{2}\end{array}\right]$
 zero matrix.
32. Fimd x from the mantrix equation $\left[\begin{array}{ll}1 & 3 \\ 4 & 5\end{array}\right]\left[\frac{x}{2}\right]=\left[\frac{5}{5}\right]$

33. Show that all the diagonal elements of a skew-symmetric matrix are zero
34. If $A=\left[\begin{array}{ll}x & 0 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$ then find value of x for which $A^{2}=B$
35. If $\left[\begin{array}{cc}x y & 4 \\ z+6 & x+y\end{array}\right]=\left[\begin{array}{cc}8 & w \\ 0 & 6\end{array}\right]$ then write the value of $(x+y+z)$
36. Show that all the diagomallelements of a skew-symmetric matrix are zero.
37. If $A=\left[\begin{array}{ll}3 & 1 \\ -1 & 2\end{array}\right]$ and $I==\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. find k so that $A^{2}=5 A+k T$.
38. If A and B aresymmetricmatrices such that $A B$ and $B A$ areboth defined, then prove that $A B-B A$ is a skew symmetric matrix.
39. For the following matrices A and B, verify that $\left[A B^{\prime}=B^{\prime} A^{\prime}\right.$;

$$
A=\left[\begin{array}{c}
1 \\
3
\end{array}\right], B=\left[\begin{array}{lll}
-1 & 2 & 1
\end{array}\right]
$$

14. Using elementary row tramsformations, find the inverse of $\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$.

Group - B

[Each 4 marks]

15. Express the matrix $A=\left[\begin{array}{ccc}2 & 4 & -6 \\ 7 & 3 & 5 \\ 1 & -2 & 4\end{array}\right]$ as the sum of a symmetric and skew symmetric matrices and verify your result.
16. Using elementary row transformations, find the inverse of $\left[\begin{array}{ccc}3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{array}\right]$
17.If $\mathrm{A}=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$ then prove that $A^{n}=\left[\begin{array}{cc}1+2 n & -4 n \\ n & 1-2 n\end{array}\right]$
18.If $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$ then verify that $A^{2}-4 A-5 I=O$
19.If $\mathrm{A}=\left[\begin{array}{lll}2 & 4 & 0 \\ 3 & 9 & 6\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}1 & 4 \\ 2 & 8 \\ 1 & 3\end{array}\right]$ then verify that $(A B)^{\prime}=B^{\prime} A^{\prime}$
17. Solve the matrix $\left[\begin{array}{lll}x & -5 & -1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]\left[\begin{array}{l}x \\ 1 \\ 4\end{array}\right]=0$

WORKSHEET(ADVANCED)

1. Using elementary row transformations, find the inverse of

2. Show that a matrix which is both symmetric as well as the skew symmetric matrix is a null matrix.
3. If $\mathrm{f}(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$ then show that $f(x) \cdot \mathrm{f}(y)=\mathrm{f}(x+y)$
4. Use matrix multiplication to divide $R s 30000$ in two parts such that the total annual interest at 9% on the first part and 11% on the second part amounts Rs3060.
5. Find the matrix A such that $A\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{ccc}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
6. Show that $A=\left[\begin{array}{cc}2 & -3 \\ 3 & 4\end{array}\right]$ satisfies the equation $x^{2}-6 x+17=0$. Also find A^{-1}
7. Let $A=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right] B=\left[\begin{array}{ll}5 & 2 \\ 7 & 4\end{array}\right]$ and $C=\left[\begin{array}{ll}2 & 5 \\ 3 & 8\end{array}\right]$ Find a matrix D such that $C D-A B=O$
8. Find the matrix A satisfying the matrix equation $\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] A\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
9. If $A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$ find A^{-1}. Hence solve the system of equations $2 x-3 y+5 z=11 \quad 3 x+2 y-4 z=-5$ and $x+y-2 z=-3$
10.If $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$ then prove that A is a root of the polynomial $f(x)=x^{3}-6 x^{2}+7 x+2$
10. The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60 . The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90 . The cost of 6 kg onion, 2 kg wheat and 3 kg rice is Rs 70 . Find the cost of each item per kg by matrix method
12.If $A B=B A$ for any two square matrices, then prove by mathematical induction that $(A B)^{n}=A^{n} B^{n}$

